
Measurement of the High Energy
Astrophysical Neutrino Flux Using Electron
and Tau Neutrinos Observed in Four Years

of IceCube Data

A Dissertation Presented

by

Hans Niederhausen

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

May 2018



Stony Brook University

The Graduate School

Hans Niederhausen

We, the dissertation committee for the above candidate for the Doctor of

Philosophy degree, hereby recommend acceptance of this dissertation.

Joanna Kiryluk - Dissertation Advisor
Associate Professor, Department of Physics and Astronomy

Dominik A. Schneble - Chairperson of Defense
Associate Professor, Department of Physics and Astronomy

Dmitri Kharzeev
Professor, Department of Physics and Astronomy

David Kawall
Associate Professor, Department of Physics

University of Massachusetts Amherst

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Measurement of the High Energy Astrophysical
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Hans Niederhausen

Doctor of Philosophy

in

Physics

Stony Brook University

2018

The high-energy universe is known to be violent. Ultra High Energy Cosmic Rays (UHE-
CRs) have been observed with kinetic energies exceeding 1020 eV. Their origin, despite
decades of observations, remains elusive. A unique probe of the sources and production
mechanisms of these high energy cosmic rays can be neutrinos, since they are inevitably
produced when high-energy protons interact. The IceCube Neutrino Observatory, located
at the geographical South Pole in Antarctica, continuously monitors a total volume of
1 km3 of clear Antarctic ice for neutrino interactions. For this purpose, a total of 5160
optical sensors (photomultiplier tubes) have been melted deep into the glacier at depths
between 1450 m and 2450 m. In 2013 IceCube reported one of its biggest discoveries, the
observation of highly energetic neutrinos that are consistent with a possible extra-galactic
origin.
In this dissertation we use IceCube data (recorded from 2012 to 2015) to study the spectral
properties of this astrophysical neutrino flux with focus on electron and tau neutrino fla-
vors. We developed a new neutrino identification and muon background rejection method
using state-of-the-art machine-learning techniques, more specifically multi-class gradient
boosted decision trees. In addition to enlarging the number of detected neutrino events
(> 10x increase over previous works), we lowered the energy threshold to below 1 TeV
and thereby greatly improved upon the control and treatment of systematic uncertainties.
The sample contains ⇠ 400 astrophysical electron and tau neutrinos, which increases the
significance of the original discovery to 8.7�. We find the astrophysical neutrino flux to be
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well described by a single power-law consistent with expectations from Fermi-type accel-
eration of high-energy particles at astrophysical sources and obtain leading constraints on
its properties. In particular this dataset favors a spectral index � = 2.53+0.07

�0.09 and a flux
normalization per ⌫-flavor of � = (1.58+0.25

�0.28) · 10�18 GeV�1s�1sr�1cm�2 at E⌫ = 100 TeV.
We further studied the possibility of additional spectral complexity, which significantly in-
creases measurement uncertainties. No evidence for such scenarios was found. Finally we
searched for a contribution from atmospheric neutrinos related to heavy meson (charm)
decay in Earth’s atmosphere and derive a flux upper limit of 4.8 times the benchmark
pQCD flux prediction at 90% confidence level, dominated by systematic uncertainties,
especially related to photon transport in the glacial ice.
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Chapter 1. Particle Astrophysics and High Energy Neutrinos

Chapter 1

Particle Astrophysics and High
Energy Neutrinos

Cosmic radiation that penetrates Earth’s atmosphere from outer space has been observed
since the early 20th century [1]. Now, more than 100 years later, di↵erent types of exper-
iments routinely measure its physical properties. By now, the cosmic radiation has been
shown to consist of charged particles and nuclei, called cosmic rays, which were discovered
first. Subsequently, the existence of cosmic �-rays, a neutral component, was established
in the 1960s [2][3]. Around the same time the first neutrinos of extra-terrestrial origin
were found: neutrino emission from the sun [4]. The first detection of neutrinos from
beyond our solar system, emitted by supernova explosion SN 1987A, was achieved in
1987. In 2012 the IceCube experiment discovered a di↵use flux of high energy, astro-
physical neutrinos [5]. Each of these three1 cosmic messengers adds unique information
that can help to solve (some) of the existing puzzles in particle astrophysics. Despite
continuous scientific progress throughout the last century, the pressing question: “What
are the sources and production mechanisms of high energy cosmic particles“ remains a
topic of on-going research.

1.1 High Energy Cosmic Rays

Cosmic rays consist of ionized nuclei with a negligible contribution from electrons < 1%
[8], which we will thus ignore in the context of this work. Roughly 90% of the nuclei are
protons, 9% are helium nuclei (↵-particles) and the rest heavier nuclei. The di↵erential
flux of cosmic rays dN/dE decreases with the kinetic energy of the nucleus (primary
particle2) and, to a good approximation, follows a doubly broken power law dN/dE / E��

over ⇠ 9 orders of magnitude. The spectral indices are observed as

• � ⇡ 2.7 for 10 GeV . E . 3 · 106 GeV

1A fourth cosmic messenger would be gravitational waves, discovered recently by LIGO [6].
2Throughout this work we will use the term particle and nucleus interchangeably. We will instead use

the word elementary particle to refer to fundamental particles without further substructure.
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Figure 1.1: The flux of high energy cosmic-rays (all particles) as function of energy-
per-nucleus obtained from air-shower measurements (Figure from [7]).

• � ⇡ 3.1 for 3 · 106 GeV . E . 3 · 109 GeV (”knee”)

• � ⇡ 2.6 for 3 · 109 GeV . E (”ankle”).

The flux appears to cut-o↵ (vanish rapidly) above ⇠ 4 · 1010 GeV [9][10]. At low to
moderate energies < 100 TeV the flux of cosmic rays (as a function of energy E and
atomic number Z of the primary nucleus) can be measured directly using balloon (e.g.
CREAM [11], TRACER[12]) and satellite-borne (e.g. PAMELA[13], AMS-02[14]) parti-
cle detectors. Since the flux decreases rapidly with energy, such direct experiments do
not provide su�cient collection area to accumulate cosmic-ray events above 100 TeV and
thus large area, ground based experiments are required. These air-shower experiments
(e.g. Auger[9], Telescope Array[10], IceTop[15]) rely on the detection of secondary parti-
cles produced in extensive air-showers initiated by collisions between cosmic-ray nucleons
and nucleons in Earth’s atmosphere. The properties of the primary cosmic-rays have to
be inferred from the observed properties of the particle showers on the ground. However,
not being able to measure the primary cosmic-rays directly, severely limits the ability of
such air-shower detectors to distinguish between di↵erent nuclei. Hence there are large
uncertainties about the composition of the cosmic-ray flux at highest energies.
In the context of production of secondary particles in cosmic-ray air-showers it will be
useful to parametrize the cosmic-ray flux in terms of the energy-per-nucleon EN , since
cosmic-ray interactions essentially reduce to nucleon-nucleon collisions in Earth’s atmo-
sphere. Below the cosmic-ray knee E < 1 PeV the di↵erential nucleon flux is [7]

dN

dEN
= 1.8 ⇥ 104

✓
EN

GeV

◆�2.7 nucleons

m2 s sr GeV
(1.1)
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Free protons contribute the majority of the nucleons to the flux (⇠ 74%) followed by
helium nuclei (⇠ 18%).
The presence of knee (⇠ 3 PeV�3 EeV) and ankle (⇠ 3 EeV�30 EeV) in the energy spec-
trum as well the observed suppression of the flux at the high energy end (E ⇠ 40 EeV)
indicate changes in the underlying population of cosmic rays and require explanation. In
the absence of experimental identification of cosmic-ray sources at all energies, assump-
tions have to be made. Galactic supernovae are believed to be the dominant source of
high energy cosmic rays below the knee. First, the expanding supernova shock has the
potential to “sweep up“ material from the interstellar medium and e�ciently accelerate
particles to high energies via di↵usive shock acceleration. Second, the energy output
⇠ 1042 erg/s from galactic supernovae, contributing to the expanding shock, would be
su�cient to counteract the loss of cosmic-rays and corresponding loss of energy from our
galaxy if a supernova rate of ⇠ 3 · (100 y)�1 is assumed [16] . In addition this requires
that a fraction 10�2 < ⌘ < 10�1 of that energy could be used to accelerate particles.
DSA can provide such conversion e�ciency. Furthermore, the chemical composition of
the observed cosmic rays is consistent with expectations from a supernova origin and
stellar nucleosynthesis. Finally, recent �-ray observations of supernova remnants (SNRs)
support the idea that protons are present in such shocks [17].
While probably contributing significantly to the observed flux of cosmic rays, c.f. Fig.
1.1, SNRs can not be responsible for all of it. Using DSA (c.f Sec. 1.2) it is possible to
derive an estimate of the maximum energy beyond which SNRs can no longer accelerate
the particles. Assuming a galactic magnetic field of ⇠ 3µG and a typical SNR lifespan of
⇠ 103 y one finds [18][19]:

Emax  Z ⇥ 3 ⇥ 104 GeV (1.2)

More recent calculations obtain somewhat higher estimates. SNRs could potentially ac-
celerate protons up to ⇠ 1015 GeV [20][16] and thus reach the on-set of the knee in the
cosmic-ray spectrum. This can be pushed further if one considers the possibility that
magnetic fields in the vicinity of the shock might be enhanced compared to the the galac-
tic average [19][16].
It is natural to assume that cosmic accelerators can be characterized by a maximum
energy Emax. Charged particles with atomic number Z and energy E are confined by
magnetic fields with strength B. The characteristic length scale for spiral motion is given
by the gyro-radius rg

rg =
R

Bc
= 1.08

E/PeV

Z · B/µG
pc with R ⌘ E

Ze
(1.3)

where R is called rigidity and characterizes the relevant particle properties. A cosmic
accelerator can not confine particles with gyro-radii larger than its own size, thereby
defining a maximum particle energy

Emax = Z ⇥ Rs/pc · B/µG

1.08
PeV (1.4)

where Rs denotes the size of the acceleration region. Eq. (1.4) is called Hillas criterion
[21]. Both eqs., (1.2) and (1.4), depend on Z and predict heavier elements to achieve
higher energies. This provides an intuitive interpretation of the knee in the cosmic-ray
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Figure 1.2: The Gaisser-H3a Cosmic Ray Flux Model [27] compared to air-shower
measurements of the all-particle cosmic ray spectrum. (Figure from [27])

spectrum via the Peters cycle [22]. In this picture the on-set of the knee is given by
the maximum energy for protons of the astrophysical accelerator. Heavier elements start
to contribute more prominently as the flux is increasingly depleted from protons, until
they too reach their maximum energy. Thus one expects heavy primaries (up to iron) to
eventually dominate the flux. This is consistent with measurements by the KASCADE
air-shower array [23]. Alternative scenarios, however, can also produce such a composition
cycle, e.g. propagation e↵ects like rigidity dependent leakage from the galaxy [19][24].

At highest energies & 1018 eV the spectrum shows another spectral transition, the ankle.
From eq. (1.4) one finds that such particles have gyro-radii & 300 pc of similar size
than thickness of our galaxy. Hence they could not be contained within the galaxy. In
addition, there are no galactic objects with a known mechanism that could explain such
high energies. Thus cosmic-rays that contribute to the ankle are believed to be extra-
galactic in origin [16]. Cosmic rays in this energy range are usually referred to as ultra high
energy cosmic rays (UHECRs). The Auger [9] experiment recently reported the discovery
of an anisotropy in the arrival directions of the UHECRs above 8 EeV in support of the
extra-galactic interpretation [25].

Careful study of these two components, galactic SNRs and un-identified extra-galactic
sources, have shown that a simple superposition of these two might not be su�cient to
explain the high energy end of knee [26]. The proposed solution introduces a third compo-
nent at intermediate energies: high energy cosmic rays produced in as of yet un-identified,
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Rc � p He CNO Mg-Si Fe

� for Pop. 1 - 1.66 1.58 1.63 1.67 1.63
Population 1: 4 PV see line 1 7860 3550 2200 1430 2120
Population 2: 30 PV 1.4 20 20 13.4 13.4 13.4
Pop. 3 (mixed): 2 EV 1.4 1.7 1.7 1.14 1.14 1.13

Pop. 3 (proton only): 60 EV 1.6 200.0 0 0 0 0

Table 1.1: Nominal Cosmic Ray Flux Model (Gaisser H3a/H4a): Cuto↵s, integral
spectral indices and normalizations constants ai,j for eq. (1.5). values from [27].

presumably galactic sources (potentially pulsars or micro-quasars [16]). However extra-
galactic possibilities exist relaxing the need for an extra component [28]3. This three
component model has been fit to cosmic-ray data, combining direct detection methods
(CREAM baloon), anchoring the low energy spectrum and composition, with air shower
measurements that constrain the spectral behavior at highest energies [27]. To simplify
the description of the composition, only the most abundant cosmic ray nuclei are de-
scribed and, for this purpose, are grouped into five components: protons, helium, CNO,
Mg-Si and Mn-Fe. The all particle spectrum then is described as the superposition of
each component from each group - each parametrized as power-law with high-energy,
rigidity-dependent exponential cuto↵ [27].

�E =
5X

i=1

3X

j=1

ai,jE
��i,j · exp

✓
� E

Zi · Rc,j

◆
(1.5)

The best-fit values for this model can be found in Tab. 1.1. Since the air-shower experi-
ments only provide loose constraints on the composition at highest energies, two results
are obtained: the Gaisser H3a parametrization assumes a mixed composition, while a
pure proton composition is used in Gaisser H4a [30]. Fig. 1.2 compares the H3a flux for
each mass group to the observed data. In this work we will use the H3a parametrization
as baseline cosmic-ray flux model.

1.2 Di↵usive Shock Acceleration

The detailed physics of particle acceleration in astrophysical sources remains an area
of active research [31]. For reasons that we will outline below it is generally assumed
that particle acceleration takes place in astrophysical plasma shocks. The argument goes
back to Fermi, who showed that highly energetic particles can gain energy from elastic
interactions with irregular magnetic fields embedded in moving clouds of plasma [32]. In
particular, he derived that such processes lead to power law spectra for the accelerated
particles in agreement with observations. The main problem with this second order Fermi
acceleration involves e�ciency considerations: typical velocities of interstellar clouds are
small � ⌘ v

c  10�4 and so is the probability for scattering of cosmic rays in the interstellar
medium [33]. Thus, particles would gain energy too slowly. However his idea stimulated a
lot of further theoretical developments that culminated in the late 1970s in a model called

3Such models exhibit potential conflict with non-observation of UHE neutrinos by IceCube [29].
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first order Fermi acceleration or di↵usive shock acceleration [34][35][36]. In this model
particle acceleration is believed to occur at the front of hydrodynamical plasma shocks, as
for example present in supernova remnants [37]. Here we will follow the exposition in [19].
For simplicity a planar, non-relativistic shock in an ionized gas (plasma) is considered
with velocity parallel to the normal direction of the shock. In addition we require the
presence of fully turbulent magnetic fields that will randomize the trajectories of highly
relativistic charged particles.
The physics of shock waves is described by fluid dynamics [38]. A disturbance that
propagates through a medium at a speed vs greater than the speed of sound cm in that
medium will cause a shock with Mach number M = vs/cm > 1. A shock essentially is a
solution to the fluid dynamics equations permitting a discontinuity in the flow of the fluid
(here: plasma, i.e. hot ionized gas) [39]. The thermodynamical properties describing the
flow of the medium behind the shock (down-stream) are influenced by the passage of the
shock, while those of the flow ahead of it (up-stream) are not. The physical properties
of shocks are best analyzed in its own rest-frame, i.e. a frame in which vs = 0. The
situation is visualized in Fig. 1.3 (top left). The up-stream (un-shocked) gas is moving
into the shock front with relative speed u1. Upon passage through the shock into the
down-stream region, the gas departs from the shock front with reduced relative speed
of u2 < u1. Requiring that mass be conserved at the shock and assuming an ideal gas
one can calculate the ratio between both speeds, the compression ratio of the shock, as
function of the Mach number [38]

u1

u2

=
rc + 1

rc � 1 + 2/M2
(1.6)

where rc = cp/cv is the ratio between the specific heats of the gas at constant pressure cp
and constant volume cv. � = 5/3 for a monatomic, ideal gas [38].

Let us now assume that there exists a population of relativistic, charged particles near
the front of the shock. These particles are very much faster than the shock itself and
thus barely notice it. For simplicity we further assume the influence of this population
on the shock itself to be negligible, i.e. we consider the test particle regime. Under these
assumptions we will be able to show that a particle, after one complete cycle of crossing
from the up-stream region of the shock into the down-stream region and subsequently
crossing back into the up-stream region, on average gains energy. Given the much larger
speed of the highly relativistic particle compared to that of the shock, such particle can
undergo many of these cycles during the lifespan4 of the shock and thus gain enormous
amounts of energy from the plasma - provided it can be confined magnetically near the
shock front for su�cient amount of time.
To make this quantitative consider a highly-relativistic particle (E ⇠ pc) propagating
towards the shock from the up-stream side with energy E 0

1
and momentum projection

onto the shock-normal direction p1
0 · n̂s ⌘ p1

0 · x̂ = E 0
1
cos ✓0

1
. Here we use primed

coordinates to denote measured values in a frame in which the up-stream gas is at rest.
This plasma rest frame is identical with the lab frame and is shown in Fig. 1.3 (top right),
with the trajectory of the test-particle marked green. The corresponding plasma velocities
(u1

0 = 0, u2
0 = (u1 � u2) x̂) are related to the ones defined in the shock rest frame (un-

primed) via Galilean transformation. An observer moving with the down-stream plasma

4characteristic timescales are O(103) y for the shock front of a typical super nova remnant[19].
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Figure 1.3: Di↵usive Shock Acceleration described in di↵erent reference frames: shock
rest frame (top left), rest frame of up-stream plasma (top right), rest frame of down
stream plasma (bottom left) and rest frame of up-stream plasma (bottom right) after
one complete cycle of particle crossings (see text). (Figure adapted from [16])

(double-primed coordinates) will measure a particle energy

E 00
1

= �E 0
1
(1 � � cos ✓0

1
) (1.7)

where � = (u1 � u2)/c denotes the relative velocity between both frames and thus the
relative velocity between the plasmas on both sides of the shock, and � = (1 � �2)�

1
2 is

the corresponding Lorentz factor. This plasma rest-frame (down-stream) is shown in Fig.
1.3 (bottom left). Assuming that turbulent magnetic fields are present, the trajectory of
the particle is quickly randomized. This is an elastic process and energy is neither lost
nor gained. The particle crosses back into the up-stream region with energy E 00

2
= E 00

1
and

therefore with momentum p2
00 · x̂ = E 00

1
cos ✓00

2
. An observer moving with the up-stream

gas (Fig. 1.3 bottom right) sees the particle emerging from the shock with energy

E 0
2

= �E 00
1
(1 + � cos ✓00

2
) (1.8)
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Substituting E 00
1

in eq. (1.8) by eq. (1.7) one finds

E 0
2

= �2E 0
1
(1 + � cos ✓00

2
) (1 � � cos ✓0

1
) (1.9)

Thus the relative energy gain for one cycle with angles ✓0
1

and ✓00
2

becomes

�E

E
=

E 0
2
� E 0

1

E 0
1

=
1 + � cos ✓00

2
� � cos ✓0

1
� �2 cos ✓00

2
cos ✓0

1

1 � �2
� 1 (1.10)

Any particular choice of angles is arbitrary and we are interested in the average gain ⇠

⇠ ⌘<<
�E

E
>✓01

>✓002
=

1 + � < cos ✓00
2

>✓002
�� < cos ✓0

1
>✓01

��2 < cos ✓0
1

>✓01
< cos ✓00

2
>✓002

1 � �2
� 1

(1.11)

To calculate these averages we need to abandon the single particle picture and consider
an ensemble of particles of equal energies instead. We wish to know the probability
distributions that describe the passage of high energy particles through the shock from
either side as function of direction (✓0

1
and ✓00

2
). First, the fraction of particles in the

ensemble that crosses through the shock-front per unit time from a certain direction
d (cos ✓) scales with the projection of their momenta onto the direction of the crossing
(parallel to the shock normal)5. dNcross/dt / p̂ · (±x̂) = ± cos ✓ (down-to-up stream
crossing: +x̂; up-to-down stream crossing: �x̂). Second, on either side of the shock, the
presence of turbulent magnetic fields completely randomizes the particle directions and
thus the distribution of particle momenta within the ensemble is isotropic: dN/d cos ✓ / 1.
Putting these two considerations together yields (after proper normalization to unity)

f (cos ✓00
2
) = 2 · cos ✓00

2
, 0  cos ✓00

2
 1 (1.12)

f (cos ✓0
1
) = �2 · cos ✓0

1
, �1  cos ✓0

1
 0 (1.13)

where the support is limited geometrically because only particles with trajectories corre-
sponding to 0�  ✓00

2
 90� (90�  ✓0

1
 180�) can cross the shock from down (up) stream

to up (down) stream, c.f. Fig. 1.3. Thus

< cos ✓00
2

>✓002
=

Z
1

0

f (cos ✓00
2
) ⇥ cos ✓00

2
d (cos ✓00

2
) =

2

3
(1.14)

< cos ✓0
1

>✓01
=

Z
0

�1

f (cos ✓0
1
) ⇥ (� cos ✓0

1
) d (cos ✓0

1
) = �2

3
(1.15)

and inserting into eq. (1.11) yields

⇠ =
1 + 4

3
� + 4

9
�2

1 � �2
⇡ 4

3
� + O

�
�2
�

(1.16)

⇠ ⇡ 4 (u1 � u2)

3c
+ O

 ✓
u1 � u2

c

◆2
!

(1.17)

5dNcross/dt /
R
A
dA · p
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where the last approximation follows from Taylor expanding to first order in � = v
c ,

justified by the non-relativistic nature of the shock (� ⌧ 1). Thus the average fractional
gain in energy for one cycle is related to the discontinuous jump of the plasma velocities
across the shock. Because this process has a first-order dependence on �, it is sometimes
called first-order Fermi acceleration6.
We can predict the energy spectrum of the population of high energetic particles that
undergo this type of acceleration process. A particle starting with energy E0 will, after
n cycles, achieve an energy of

En = E0 (1 + ⇠)n (1.18)

where the number of cycles necessary to achieve energy E is

n =
log (E/E0)

log (1 + ⇠)
(1.19)

However there is always a finite probability 0 < Pesc < 1 that the particle leaves the shock
front and thus the acceleration region, hence aborting the sequence. The probability to
remain after n encounters is q ⌘ (1�Pesc)n < 1. Assuming after some (large) time a large
number of particles Np, all injected with energy E0, remains in the acceleration region,
we can find the number of particles N (Ep � E) which experienced at least n cycles from7

N (Ep � E) = Np

P1
k=n qkP1
k=0

qk
= Npq

n (1.20)

Inserting eq. (1.19) we find a power-law (integral) spectrum8

N (Ep � E) = Np

✓
Ep

E0

◆1��

(1.21)

� = 1 � log (1 � Pesc) / log (1 + ⇠) ⇡ 1 +
Pesc

⇠
(1.22)

which yields a power-law di↵erential spectrum9 with normalization Np and spectral index
�.

dN

dE
= � d

dE
N (Ep � E) = Np

� � 1

E0

✓
E

E0

◆��

(1.23)

To determine the spectral index we need to calculate the escape probability Pesc. The
flux of relativistic particles moving across the shock from the up-stream side and starting

6The fractional energy gain for Fermi’s original proposal can be shown to only have O
�
�2
�
-

dependence, and thus is significantly less e�cient [19].
7using (partial) geometric series
8using alog b = blog a

9Normalize to unity by dividing out Np. Then this is a pareto probability distribution defined as

f (x;↵) = ↵x
↵
m

x↵+1 , x � xm with ↵ = � � 1
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a cycle is

�
Z

0

�1

d cos ✓0
1

Z
2⇡

0

c⇢CR

4⇡
cos ✓0

1
=

c⇢CR

4
(1.24)

where we define ⇢CR as the number density of the high energy particles and used that
the flux is isotropic in the rest frame of the plasma (upstream). The flux of particles
convecting away from the shock is given by the down-stream plasma velocity: ⇢CRu2.
The escape probability thus is the ratio between the two:

Pesc =
⇢CRu2

1

4
c⇢CR

= 4
u2

c
(1.25)

Inserting eqs. (1.25) and (1.11) into eq. (1.22) yields a prediction for the di↵erential
spectral index from di↵use shock acceleration of

� = 1 +
3

u1/u2 � 1
(1.26)

The compression ratio of the shock u1/u2 is given by eq. (1.6) and thus one finds for a
monatomic gas (rc = 5/3) undergoing a strong shock M � 1

� ⇡ 2 +
4

M2
+ O(

1

M3
) �! � ⇡ 2 + O(

1

M2
) (1.27)

The universal prediction from first order Fermi acceleration are high energy particle spec-
tra that behave as dN/dE / E�2. Insu�ciencies in the acceleration process, for example
from back-reactions of the accelerated particles on the shock itself, can lead to spectra
that are softer � > 2 [40]. In particular, �-ray observations of bright super nova remnants
suggest softer high energy spectra with typical spectral indices in the range ⇠ [2.2 � 2.4]
(if interpreted as hadronic in origin) [19][41][42]. Departures in the opposite direction
are also possible: amplification of magnetic fields, especially in the early phase of the
expanding shock, can produce spectra with � < 2.0 [16][43]. Other authors find such
scenarios to still permit spectral indices as soft as � ⇠ 2.3 [41].

The observed (galactic) cosmic-ray spectrum at Earth (� ⇡ 2.7) is significantly steeper
than the cosmic-ray injection spectrum at the source predicted by simple DSA (� ⇡ 2.0).
This can be understood as a propagation e↵ect. Cosmic-ray propagation models predict
a rigidity-dependent escape length �esc ⇠ R�� and thus higher-energy cosmic rays are
expected to be more e�ciently removed from the galaxy. For protons one can show that
the observed spectrum at Earth relates to the injection spectrum via �earth ⇠ �s ⇥ E��.
Early measurements of the Boron to Carbon ratio in the cosmic-ray flux at earth indicate
� ⇠ 0.6. Thus one might infer a (galactic) proton injection spectrum with � ⇠ 2.1 (=
2.7�0.6), close to the DSA prediction. More recent measurements obtained by PAMELA
[44] and AMS-02 [45], however prefer smaller values. The latter measured � = 0.3(3).
Theoretical predictions based on models of turbulence in magnetized plasmas range from
� = 1/2 [46] to � = 1/3 [47]. Thus in these scenarios softer proton injection spectra
� ⇠ [2.2 � 2.4] would be deduced.
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Similar to their galactic counterparts, the observed spectrum at Earth of UHECRs di↵ers
from the injection spectrum at their sources. Interactions between protons and photons
from the CMB (cosmic microwave background) as well as infrared photons from the
EBL (extra-galactic background light) lead to rapid energy loss over the large distances
involved and are responsible for the GZK cuto↵ (c.f. Sec. 1.5). Photo-disintegration of
UHECR nuclei increases the energy loss rate for heavier elements [48]. Since the energy
loss rates di↵er between protons and heavier elements, any inference based on the observed
cosmic-ray spectrum about the source injection spectrum depends on assumptions about
the composition of the injected UHECRs. Pure proton injection would yield soft injection
spectra � > 2.5 above 1018 eV [49] if the maximum energy of the acceleration process
reaches ⇠ 1021 eV. If the maximum energy is lower, the injected spectral index could be
harder � ⇠ 2 [49]. Recent analysis of data obtained by AUGER [9][50] points instead to a
rather heavy composition and is found to require much harder injection spectra: � ⇠ 1.0
[51]. Whether or not the composition at highest energies is dominated by light or heavy
nuclei is still debated [52][53].

1.3 Neutrino Production Mechanisms

The neutrinos that we will study in this work stem predominantly from the decay of
charged mesons, especially pions.

⇡+ �! ⌫µ + µ+ �! ⌫µ + e+ + ⌫e + ⌫̄µ
⇡� �! ⌫̄µ + µ� �! ⌫̄µ + e� + ⌫̄e + ⌫µ

(1.28)

These pions are created when high-energy protons interact and thus neutrino production
can take place wherever such interactions take place. For this reason every astrophysical,
hadronic particle accelerator is expected to be a source of neutrinos. While protons are
confined by magnetic fields during acceleration, the neutrinos are not and thus can freely
escape the source once produced. However the production is not limited to the accelera-
tor itself. The high-energy protons that do escape from the source can interact with gas
(e.g. molecular clouds) on their path and produce neutrinos. We refer to neutrinos that
are not produced at Earth as astrophysical neutrinos. Finally, once at Earth, interactions
inside Earth’s atmosphere produce atmospheric neutrinos via the same mechanism (c.f.
Sec. 1.7).
Pion production giving rise to a flux of astrophysical neutrinos can broadly be classi-
fied into two mechanisms: purely hadronic scenarios dominated by proton-proton (pp)
collisions and photo-hadronic (p�) pion production due to protons interacting with ambi-
ent photons (photons created by the source itself, but also CMB photons, EBL photons).
These two scenarios can be seen as limiting simplifications of more complex source models
[54]. For pp-dominated sources one expects

p + p �! N
⇥
⇡0 + ⇡+ + ⇡�⇤+ X (1.29)
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while for p�-dominated sources one finds

p + � �! �+ �!
(
⇡+ + n 1

3
of all cases

⇡0 + p 2

3
of all cases

(1.30)

In both scenarios the decays of the neutral prions ⇡0 ! � + � give rise to a flux of high-
energy �-rays. The implications will be discussed in Sec. 1.6. Neutrinos produced via
the pion decay chain carry on average a fraction ⌘ of the kinetic energy of the primary
proton

E⌫ ⇠ ⌘ · Ep with ⌘ ⇠ 0.05 (1.31)

Eq. (1.30) permits the production of additional (low energy [19]) electron anti-neutrinos
from the decay of the neutron. The injected neutrino flavor ratios (⌫e : ⌫µ : ⌫⌧ ) and
(⌫̄e : ⌫̄µ : ⌫̄⌧ ) depend on the details of energy-loss mechanisms at the source. The baseline
scenario uses eq. (1.29) and predicts (⌫e : ⌫µ : ⌫⌧ ) = (⌫̄e : ⌫̄µ : ⌫̄⌧ ) = (1 : 2 : 0) for
pp-dominated sources. Neutrino oscillations over astrophysical distances will alter the
injected flavor ratio and one expects to observe a (nearly) equal admixture of neutrino
flavors in the measured flux (⌫e : ⌫µ : ⌫⌧ ) ⇡ (1 : 1 : 1) at Earth10.

More exotic neutrino production mechanisms include top down scenarios in which heavy
dark matter particles decay into high-energy neutrinos [56][57][58].

1.4 Astrophysical Sources of High Energy Neutrinos

Obvious sources of astrophysical neutrinos are the sun (solar neutrinos) and core-collapse
supernova explosions (SN neutrinos). Both produce low energy neutrinos11 as shown in
Fig. 1.4. Their energies are below the particle detection threshold of IceCube (⇠ 10 GeV)
and are thus of no further interest for this work.

Galactic Supernova Remnants
From the discussion above it should be clear that galactic SNRs are expected to produce
a flux of astrophysical neutrinos at energies much larger (⇠ TeV) than the ones produced
in the actual supernova explosion (⇠ MeV). From the perspective of a neutrino detector,
these sources can be considered as point-like. SNRs that appear bright in �-rays with
a hard spectrum � ⇠ 2 are especially promising candidate neutrino sources, if their �-
ray emission is rooted in hadronic interactions. One example is SNR RX J1713.7-3946,
which has been observed by the HESS �-ray telescope at energies E� > 10 TeV. The
observed flux of �-rays allows to derive an order-of-magnitude estimate of its neutrino
emission of E2dN/dE ⇠ 10�11 TeV s�1 cm�2 [16], corresponding to an integral flux of
⇠ 2 km�2yr�1 above 1 TeV [61]. IceCube has searched for neutrino emission from point
sources in general including RX J1713.7-3946 (and other galactic SNRs for that matter)

10This expectation can be turned around and has been proposed to search for non-standard neutrino
oscilllations [55].

11An ensemble of SN neutrinos can still be detected by IceCube as a correlated enhancement in the
noise-rate of all DOMs across the detector [60].
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Figure 1.4: Comparison of Neutrino Fluxes expected from di↵erent natural and man-
made neutrino sources. (Figure from [59])

in the muon neutrino channel. Thus far, no neutrino point source has been identified.
For RX J1713.7-3946 the current flux upper-limit12 is similar to this rough estimate [62].
The physics of galactic neutrino emission is reviewed in [63].

Gamma Ray Bursts
Gamma Ray Bursts (GRBs) are powerful flashes of high energy �-rays, first observed in
the late 1960s. They can release a total energy of up to 1053 erg within a few seconds
[19]. Since the distribution of GRBs across the sky is isotropic, they are extra-galactic
in origin. Long GRBs (t > 2 s) are believed to be due to black hole formation of massive
stars releasing the energy in powerful relativistic jets. Such jets could power particle
acceleration [19]. Short GRBs (t < 2 s) are instead believed to be caused by merging
neutron star pairs (or neutron star - black hole pairs). The recently observed gravitational
wave event GW170817 [6] in spatial and temporal coincidence with a burst of �-rays
detected by the Fermi satellite are consistent with the merger of two neutron stars [64].
While the physics of the GRB emission is not fully understood, it has been suggested
that p� interactions between shock-accelerated protons ⇠ 1015 eV with ⇠ MeV �-rays
could produce a flux of ⇠ 1014 eV neutrinos [19][65]. Therefore, GRBs are also promising
candidate sources for UHECRs (with some caveats [66]). GRBs spectra are found to be
described by a doubly-broken power law [19]

dN

dE
/
(

E�↵ exp (�E/E0), E < E0

E��, E � E0

(1.32)

12IceCube obtains significantly stronger limits for sources that are located in the Northern Sky.
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with � > ↵. While all parameters are variable between GRBs, typical values for the
spectral indices can be defined (↵ ⇡ 1, � ⇡ 2).
IceCube has searched for neutrino emission from known GRBs but none was found, thus
challenging model assumptions [67]. However more recent estimates lowered the neutrino
flux expectations [68][69]. We refer to [70] for a recent review of the topic.

Active Galactic Nuclei
Active Galactic Nuclei (AGNs) refer to galaxies with an exceptionally bright central
region and make up about O(1)% of all galaxies [19]. Thus, by definition, AGNs are
extra-galactic sources. The emission is powered by a supermassive central blackhole.
Gravitational energy is released in the accretion process of material onto the black hole.
AGNs have been suggested as possible sources of UHECRs [71]. Historically, AGNs
are classified by their observational phenomenology. From the perspective of neutrino
emission radio-loud AGNs with relativistic, jetted outflows are of particular interest.
If the jet of a radio-loud AGN points towards Earth, the AGN is classified as blazar.
Blazar jets are good candidates for hadronic particle acceleration via DSA with neutrinos
produced in p� interactions. However the observed �-ray spectra could also be explained
with purely leptonic processes [16], in which case no neutrinos would be produced. Despite
in jet, neutrinos (and high energy cosmic rays) could also be produced closer to the central
engine (black hole) [72][73]. In this case the neutrino emission would not relate to any
observable �-rays, because photons produced near the blackhole, where densities are large,
in contrast to the neutrinos would simply get absorbed. Hence neutrinos would be the
only proof of hadronic interactions near the black hole [48]. Depending on the distance
to the central black-hole AGN jets have the potential to generate neutrinos with energies
beyond ⇠ 1018 eV [48]. Early indications of correlations between the arrival directions of
UHECRs with known AGNs have since disappeared [9].
An interesting connection between �-rays, UHECRs and high energy neutrino production
has been pointed out in [74]. In this model high energy protons are accelerated in black-
hole jets that are embedded in clusters of galaxies. Subsequent interactions with the
cluster medium can e�ciently produce secondary neutrinos and �-rays, broadly consistent
with observations in all three channels [74].

Starburst Galaxies
Starburst galaxies (SBGs) are yet another potential extra-galactic source of high energy
neutrinos. These are galaxies with large gas densities that allow for exceptionally high
specific star formation rates (sSFR), star formation rate per galaxy stellar mass, larger
than the average sSFR of galaxies at a given redshift z [75]. Cosmic rays produced in
such galaxies (e.g. in SNRs) would lose all their energy in interactions with the ambient
gas. The resulting charged and neutral pions from e.g. pp-collisions produce �-ray and
neutrino spectra that follow the cosmic-ray injection spectra more closely than in our
galaxy, where leakage of high energy cosmic rays from the galaxy has to be considered
(c.f. Sec. 1.2). The cumulative neutrino flux from SBGs has been estimated in [76]:

E2
dN

dE
⇡ 10�7

✓
E

1 GeV

◆�0.15±0.1

GeV cm�2 s�1 sr�1 (1.33)

thus the spectral index ranges from 2.0 . � . 2.3. At high energies E > 100 TeV, the
morphology of the flux might be more complicated. As in our galaxy, a possible knee
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Figure 1.5: The Hillas criterion eq. (1.4) evaluated for various high energy cosmic
ray candidate sources. (Figure from [80])

in the spectrum of primary cosmic rays would introduce a break into the spectrum of
SBG neutrinos. The onset of the knee in SBGs, however, might be shifted towards higher
energies, given that SBGs are believed to have higher magnetic fields than out own galaxy.
Other authors have pointed out that � < 2.2 is imposed by measurements of the di↵use
flux of �-rays by Fermi [77], that would otherwise be over-predicted.
Most recently it has been pointed out [78][79] that fluxes as high as predicted by eq. (1.33)
are strongly challenged by recent Fermi measurements, that attribute a large fraction of
the observed di↵use �-ray flux to non-identified blazars, i.e. blazars too faint to be
identified individually by Fermi (c.f. Sec. 1.6).

The maximum neutrino energies reachable by di↵erent sources are related to the limiting
proton energy via eq. (1.31), which can be estimated from the Hillas criterion eq. (1.4).
In this simple picture, the maximum proton energy depends on the magnetic field and
the size of the source. These are compared in Fig. 1.5 (“Hillas plot“) for a variety of
sources, including the ones discussed above.

An Upper Bound on the Extra Galactic Neutrino Flux
Assuming that extra galactic neutrinos are produced in sources that are optically thin to
cosmic rays (i.e. where cosmic rays can escape from the source alongside the neutrinos)
it is possible to derive constraints on the expected neutrino flux from such sources using
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UHECR measurements [81][82][83]. Here we follow the argument presented first in [81],
known as the Waxman-Bahcall bound, which assumes a CR injection spectrum with
spectral index � = 2 (from DSA, c.f. Sec. 1.2) and with proton-dominated composition.
The observed flux of UHECR cosmic rays (E > 1019.2 GeV) allows for an estimation of
the local (z = 0) generation rate of cosmic-ray energy (per logarithmic energy interval)
of [75]

dQ/d ln E ⌘
✓

E2

p

dṅp

dEp

◆

z=0

= (0.5 ± 0.15) ⇥ 1044 erg Mpc�3 y�1 (1.34)

where z is the redshift parameter. In the vicinity of the source, protons have some
probability to undergo photo-meson production interactions, eq. 1.30. Thus a fraction ✏
of these protons will convert their energy into the production of secondary particles. The
resulting neutrinos (from pion decay, eq. (1.28)) inherit the injected proton spectrum,
since in each interaction a part ⌘ ⇠ 0.05 of the parent proton energy is transferred to the
neutrino (see eq. (1.31)). These considerations make it possible to relate the expected
neutrino flux to the generated cosmic-ray energy dQ/d ln E

E2

⌫

dN⌫

dE⌫
⇡ 1

4
⇠ztH

c

4⇡
⇥ ✏

dQCR

d ln ECR
(1.35)

where tH ⇠ 1010 y is the Hubble time and ⇠z a redshift correction. The factor of 1/4
accounts for the fact that on average per photo-meson interaction, eq. (1.30), mostly
�-rays are produced and thus only a fraction of the non-hadronic secondary particles are
neutrinos. The upper limit on the neutrino flux is then given by ✏ ! 1, when all protons
undergo one photo-meson production interaction. In this limit cosmic-rays will still be
observable, because neutrons are produced (e.g. eq. (1.30)) that can escape the source
and decay later into protons [81].
Numerically, the limiting all-flavor neutrino flux is given as [75]

E2

⌫

dN

dE⌫ WB
= 3.4 · 10�8 ⇥ ⇠z

3


dQCR/d ln ECR

0.5 · 1044 erg Mpc�3 y�1

�
GeV cm�2s�1sr�1 (1.36)

The redshift correction ⇠z accounts for the possibility that the cosmic-ray generation rate
could have been di↵erent (higher) in the cosmological past. Such protons can not reach
Earth because of the GZK e↵ect (c.f. 1.5) but the neutrinos would, albeit with reduced
energy (red-shifted). Values for ⇠z range from ⇠z = 0.6 (no evolution) to ⇠z = 3 (evolution
similar to star formation rate). Thus, the conservative bound becomes

E2

⌫

dN

dE⌫ WB
. 3 · 10�8 ⇥


dQCR/d ln ECR

0.5 · 1044 erg Mpc�3 y�1

�
GeV cm�2s�1sr�1 (1.37)

The bound does not apply to sources where no cosmic-rays can escape, for example due
to large optical thickness of the source to proton-nucleon interactions. Possible models
are given in [72][73]. Finally higher neutrino fluxes are allowed if the proton injection
spectrum is softer than � = 2.
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1.5 Neutrinos from Cosmic Ray Propagation

Galactic Propagation
During propagation from their sources, cosmic rays can produce neutrinos in pp-collisions
with interstellar gas [39].

dN⌫

dE⌫
⇠ ⌧⌫ (E⌫)

dNp

dEp

���
Ep=E⌫

(1.38)

where ⌧⌫ (E⌫) is an e↵ective optical depth for neutrino production and depends on the gas
and cosmic ray densities within our galaxy as well as the proton interaction cross-section.
Here one has to assume that the cosmic-ray flux observed at Earth is representative of
the flux throughout the galaxy, which is subject to debate[84][85]. Using eq. (1.38) the
neutrino flux from galactic cosmic ray propagation has been approximated in [39]

dN⌫

dE⌫
. 4 ⇥ 10�22

0

@
E2dNp/dEp

���
E=1PeV

3 · 10�4 GeV cm�2 s�1 sr�1

1

A⇥
✓

E⌫

1 PeV

◆�2.7

GeV�1cm�2s�1sr�1

(1.39)

which at E⌫ = 1 PeV would be O(1)% of the Waxman-Bahcall bound, eq. (1.36). For
comparison: IceCube observes a flux of astrophysical neutrinos at ⇠ 1 PeV at the level of
the WB-bound (eq. (1.37)). More refined models for di↵use galactic neutrino production
based on �-ray observations and simulations of galactic cosmic ray propagation suggest
higher neutrino fluxes [86]. Using these models, IceCube has searched for such a neutrino
flux above E⌫ = 1 TeV. The non-observations thereof allows to constrain the galactic
contribution to the di↵use astrophysical neutrino flux, measured by IceCube, to < 14%
[87].

Extra Galactic Propagation
Cosmic ray protons (and nuclei) in the UHECR energy regime rapidly lose energy in
interactions with photons (CMB and EBL). The interactions include [88] the production
of electron-positron pairs (p + � ! p + e+e�), photo-pion production eq. (1.30) and
photo-disintegration of nuclei (e.g. ZA + � ! ZA�1 + n). In all interactions energy is
transferred from the proton (nuclei) to the secondary particles. For pair-production the
proton energy threshold is [39]

Ep ⇠ 4.8 ⇥ 1017
⇣ ✏

10�3 eV

⌘�1

eV (1.40)

where ✏� is the energy of the target photon. The photo-pion production threshold is
higher since the (rest) mass of the pion is higher than that of the electron-positron pair:

Ep ⇠ 3.4 ⇥ 1019
⇣ ✏�

10�3 eV

⌘�1

eV (1.41)

The corresponding energy loss lengths dE/ds = �E/Lloss for high energy protons (nuclei)
are shown in Fig. 1.16, left (right). The energy loss length of protons (nuclei) at highest
energies (⇠ 1020 eV) is small compared to the observable universe. Taking into account
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Figure 1.6: Energy loss length of UHECRs as function of primary energy for protons
(left) and oxygen (right) for di↵erent energy loss mechanisms (Figure from [88]).

cosmological e↵ects, one can show that the cosmic rays observed at Earth, if interpreted as
protons, must have been produced within the GZK sphere [89][90] of radius 75�150 Mpc
[19]. Similar arguments apply to heavy primaries [91]. Whether or not the observed
suppression of the flux of UHECR cosmic rays above ⇠ 40 EeV is due to this GZK
cuto↵ or simply related to the maximum energy, that the UHECR sources can accelerate
particles to, remains to be seen [92].

If protons dominate the cosmic-ray spectrum at highest energies and their sources are
powerful enough to accelerate them to energies beyond the GZK cuto↵, then neutrinos are
generated e�ciently through the pion decay chain eq. (1.28). The corresponding flux of
GZK neutrinos could be observed at Earth. Flux estimates are strongly model dependent
[93]. IceCube has searched for this neutrino flux but so far no neutrinos consistent with
a possible GZK origin have been observed13 [94].

1.6 Relevance of �-ray Observations

Neutrino production at extra-galactic sources (pp or p�) is associated with the production
of �-rays from the decay of neutral pions, see eq. (1.29) and eq. (1.30). Assuming that
these sources are optically thin to photons, such that the �-rays can escape instead of
being absorbed, it is possible to constrain the di↵use astrophysical neutrino flux and
possible sources thereof. During propagation, these high energy �-rays are subject to
interactions, similar to the case of high energy protons. Of particular relevance is pair-
production on background photons from the CMB: � + �CMB �! e+e� (but also other
cosmic photon radiation, e .g. EBL). The energy threshold for high-energy photons (E�)
to produce an electron-positron pair with a background photon of energy ✏� is [39]

E� ⇠ 2.6 ⇥ 1014
⇣ ✏�

10�3 eV

⌘
eV (1.42)

13From E⌫ ⇠ 0.05Ep one expects such neutrinos to have O(EeV ) energies
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Figure 1.7: Mean free path of very high energy photons due to pair production
interactions with low energy photons from CMB (solid line) and other cosmic photon
radiation (dashed, dash-dotted). (Figure from [95])

and thus photons of O(300) TeV are e�ciently absorbed. However through inverse comp-
ton scattering (e± + �CMB �! �0 + e±) it is possible for one of the high energy leptons
to create another high energy photon (E 0

� < E�). The produce repeats until the leading
photon energy falls below the pair-production threshold and the cascade stops. The low-
energy photons at the end of the cascade can be measured by �-ray satellites, like Fermi
[32]. The constraint on the di↵use astrophysical neutrino flux is derived by requiring that
the expected di↵use �-ray flux from this cascading process not exceed the measured flux
of �-rays. Such a calculation has been performed to formulate a cascade bound on the
expected flux of GZK-neutrinos (see above) [96]. It is similar to the Waxman-Bahcall
bound and is given in for the sum of all flavors [96].

E2

⌫

dN

dE⌫
. 4 ⇥ 10�8 GeV cm�2 s�1 sr�1 (1.43)

Based on similar arguments it has recently been pointed out, that the astrophysical
neutrino flux measured by IceCube in the few tens of TeV energy range, appears to favor
sources from which �-rays do not escape [78][79].
The mean free path of high-energy photons as function of their energy (and photon target)
is given in Fig. 1.15. The strong high energy absorption of �-rays is one of the motivations
for pointed neutrino astronomy. The universe at highest energies is opaque to photons
but not neutrinos.
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Figure 1.8: A schematic diagram of secondary particle production during the devel-
opment of cosmic-ray induced air-showers. (Figure from [97])

1.7 Atmospheric Neutrinos

Cosmic Rays not only produce neutrinos in astrophysical sources or during propagation
but also upon arrival at Earth. Nucleon-nucleon collisions between cosmic ray nuclei and
nuclei in Earth’s atmosphere initiate cascades of secondary particles, called air showers,
that develop towards the surface. Neutrinos are produced in the decays of mesons: pions,
kaons and, to a lesser degree, heavier mesons. This is schematically visualized in Fig.
1.8. The fluxes of secondary particles at the surface depend on the competition between
interaction and decay of unstable particles in the shower. Qualitatively higher-energy
pions and Kaons are more likely to interact before they decay and thus on average suf-
fer from higher energy loss than pions and Kaons of lower energy. Neutrinos that stem
from the decay of pions and kaons in the atmosphere are called conventional atmospheric
neutrinos, while neutrinos produced in the decays of heavier mesons (involving a charm
quark) are referred to as prompt atmospheric neutrinos. The latter name reflects that
the lifetime of heavy mesons is so short that interactions (thus energy loss) are negligible
and hence the energy spectrum at Earth follows that of the primary cosmic-rays ⇠ E�2.7.
The conventional component instead follows the primary cosmic-ray spectrum only at low
energies ⌧ 150 GeV. At higher energies � 850 GeV energy loss steepens the spectrum
by about one power compared to the CRs and behaves as ⇠ E�3.7. The meson decay
probabilities also influence the declination dependence of the two atmospheric neutrino
flux components. Prompt atmospheric neutrinos again inherit their flux from that of the
primary cosmic-rays, and thus their flux is isotropic. The conventional atmospheric neu-
trino flux is largest for horizontal directions, because the e↵ective depth of the atmosphere
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is larger, increasing the fraction of mesons that decay rather than interact compared to
vertical directions. At energies relevant for this work and above, E & 1 TeV, the con-
ventional atmospheric flux is increasingly dominated by the contribution from the decays
of charged Kaons into muon neutrinos. The prompt atmospheric neutrino flux instead
consists equally of muon and electron neutrinos, with negligible contribution from tau
neutrinos.
Quantitatively the evolution of secondary particle fluxes during air-shower development
are described by a set of coupled di↵erential equations, called cascade equations [98]. The
flux �h of secondary particles of type h changes within a di↵erential slant depth dX as

d

dX
�h (E) = �

⇢
�h (E)

�hint (E)
+

�h (E)

�hdec (E)

�

+
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dE 0
⇢

1
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E

�
�l (E

0)

(1.44)

where the slant depth X (h0) =
R h0

0
dl⇢air (hatm (l)) is defined along the particle trajectory

l. The first term in eq. (1.44) (RHS) describes the loss of particles of type h with energy
E through interactions and decay, while the second term gives the contribution to the
flux of h at energy E from interactions and decay of all other particles in the cascade
with energies E 0 > E. A discretized version of eq. (1.44) can be solved numerically using
the Matrix Cascade Equation (MCEq) package [98].
Alternatively, one can calculate the atmospheric neutrino flux at surface from Monte Carlo
simulations of the particle transport during air-shower development. Such simulations
have been performed by various groups [99][100].
Approximate analytical solutions are given in [19] for the conventional neutrino flux
(⇡/K-component)

dN⌫

dE⌫
(e⌫) ⇡ dNNCR

dENCR

1

1 � ZNN
(E⌫) ⇥

n A⇡⌫

1 + B⇡⌫ cos ✓E⌫/✏⇡

+ 0.635
AK⌫

1 + BK⌫ cos ✓E⌫/✏K

o (1.45)

where dNNCR/dENCR is the primary cosmic ray nucleon flux. The branching ratio for
the leptonic K± decay channel is 0.635 and ZNN is a spectrum weighted moment for
nucleon (p or n) production in cosmic-ray collisions with air14. Similarly, the coe�cients
Aij and Bij encode particle physics relevant for pion and kaon production in cosmic ray-
air collisions. Lastly, the critical energies ✏⇡/K (✏⇡ = 115 GeV, ✏K± = 850 GeV [19])
denote the energy above which interactions dominate over meson decay and explain the
steepening of the conventional neutrino spectrum compared to the primary cosmic rays
for E⌫ � ✏⇡/K . For near horizontal trajectories ✓ & 70� the zenith angle cos ✓ in eq.
(1.45) need to be corrected for the curvature of atmosphere. This correction is given in
[103].

14This is essentially the average fraction of the interaction energy going into nucleon final states (p or
n) [19].
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Figure 1.9: Conventional atmospheric muon neutrino (left) and electron neutrino
(right) flux predictions for various hadronic interaction models (colors). Top (center)
row: Energy spectrum for nearly horizontal (vertical) directions. Bottom row: flux as
function of zenith angle at di↵erent energies. Flux predictions from [99] (black) and
[98] (other colors).

22



Chapter 1. Particle Astrophysics and High Energy Neutrinos

The nominal conventional atmospheric flux model, used by IceCube, relies on the Monte
Carlo simulation of [99] (HKKMS06), which above E⌫ = 10 TeV has been extrapolated to
higher energies using eq. (1.45). The primary cosmic ray flux assumes the Gaisser-H3a
model, eq. (1.45)15. The corresponding conventional atmospheric neutrino flux prediction
is shown in Fig. 1.9 (black) for muon neutrinos (left) and electron neutrinos (right). The
flux is sensitive to assumptions about hadronic interactions in the atmosphere.

As part of our work, we used MCEq [98] to numerically solve the cascade equations for
di↵erent interactions models to derive an independent flux prediction. The corresponding
solutions are given in Fig. 1.9 (colors). The di↵erences constitute systematic uncertainties
and are discussed in Sec. 4.2.1. Since IceCube is not embedded within a strong magnetic
field, the detector essentially has no capabilities to distinguish between neutrinos and

15Since the original MC simulation performed by HKKMS06 assumed a di↵erent (dated) cosmic-ray
primary flux, a correction function is applied.

Figure 1.10: Neutrino Fluxes relevant for this work: conventional atmospheric muon
neutrinos (blue) and electron neutrinos (red) [99]; prompt atmospheric neutrinos (black)
[101][102] and Waxman-Bahcall bound [81] for astrophysical neutrinos (green).

23



Chapter 1. Particle Astrophysics and High Energy Neutrinos

anti-neutrinos16 and thus it is instructive to discuss fluxes per neutrino flavor (⌫x + ⌫̄x,
x 2 {e, µ, ⌧})17. Since the tau lepton is heavier than pions and kaons, the conventional
neutrino flux does not contain a tau neutrino contribution. Fig. 1.10 compares the total
conventional flux of electron neutrinos (red) to that of muon neutrinos (blue). Above
E⌫ ⇠ 10 TeV the contribution from muon neutrinos dominates over that from electron
neutrinos by a factor of ⇠ 30, since electron neutrinos are only produced in semi-leptonic
Kaon (K±, K0

L)18 decays. For comparison the Waxman-Bahcall per-flavor upper bound
is shown in green.

Prompt Atmospheric Neutrinos
Prompt atmospheric neutrinos are created in the decays of heavy mesons including at
least a charm (or heavier) quark that are produced in energetic air-showers. The flux
prediction su↵ers from larger uncertainties than that of conventional atmospheric neu-
trinos, since high-energy forward production of heavy mesons is experimentally not well
constrained. Thus far, the prompt neutrino flux has not been observed. In the past,
IceCube analyses used the ERS [101] prompt neutrino flux prediction. The calculation
has later been refined by the same authors [102], which we will refer to as BERSS prompt
neutrino flux prediction. At relevant energies 1 TeV < E⌫ < 1 PeV the BERSS flux is

16up to small di↵erences in inelasticity distributions.
17At low energies ⌫N and ⌫̄N DIS interaction cross-sections are di↵erent c.f. Sec, 1.8.
18At highest energies ⇠ 100TeV an extra contribution to the electron neutrino flux from K0

S
decays is

expected [42].

Figure 1.11: Various calculations of the atmospheric neutrino flux from the decay of
heavy mesons (prompt): ERS [101], BERSS [102], GRRST [104] and GMVFNS [105]
in comparison to the WB bound [81] on the flux of astrophysical neutrinos.

24



Chapter 1. Particle Astrophysics and High Energy Neutrinos

lower than the earlier ERS prediction by a factor of ⇠ 2.7�3.019. Both fluxes (per flavor)
are compared to the conventional neutrino flux (and the astrophysical WB bound) in Fig.
1.9 (ERS: black dotted, BERSS: black solid), assuming the Gaisser-H3a primary cosmic-
ray flux, eq. (1.5). Since the prompt fluxes of electron and muon neutrinos are equal and
also independent of declination, only one line is visible. Not shown is the subdominant
contribution from prompt atmospheric tau neutrinos, which is predicted at the level of
10% of the prompt muon (electron) neutrinos flux [106]. In the relevant energy range
for our work, the prompt flux is strongly subdominant to the combined background from
conventional atmospheric and astrophysical neutrinos.
The flux of prompt atmospheric neutrinos has been calculated independently by di↵er-
ent authors. Two recent examples are GRRST [104] and GMVFNS [105]. The corre-
sponding results are compared to the BERSS calculation in Fig. 1.11 and agree within
 20%, which is smaller than the theoretical uncertainties estimated by the di↵erent
author groups. Throughout this work we will use the BERSS prediction as the baseline
model. Systematic uncertainties will be accounted for by allowing the flux normalization
to vary (c.f. Sec. 5.2.2).

1.8 Principles of Neutrino Detection in Ice

Several di↵erent neutrino detection methods exist and target neutrinos at di↵erent en-
ergies, e.g. using scintillators [107], radio chemical methods [4], tracking calorimeters
[108], Cherenkov detectors [109] and radio detectors [110]. The ⇠ TeV-PeV energy range
of interest for this work is best explored using the Cherenkov technique as done by the
IceCube experiment [111]. High energy neutrinos that interact with the medium inside
or nearby the detector produce charged secondary particles. These charged secondary
particles during propagation produce Cherenkov light which contains information about
the neutrino interaction and can be measured experimentally.

High-Energy Neutrino Interactions with Matter
At energies relevant for this work, E � 100 GeV, neutrinos interact with the detector
medium (Antarctic ice, c.f. Sec. 2.2) essentially solely via neutrino-nucleon deep inelastic
scattering (⌫N -DIS). In this regime, the asymptotic freedom of QCD allows for a simpli-
fied description of the nucleons in the ice (protons and neutrons bound in hydrogen and
oxygen nuclei that make up water molecules), the so-called parton picture, i.e. nucleons
being composed of free constituents, called partons (later identified as quarks and gluons).
In this picture the neutrino interacts with the nucleon via the weak force by exchanging a
W± (charged-current interaction, CC) or Z0 (neutral-current interaction, NC) with one
of the partons inside the nucleon system. The interactions are:

⌫x + N �! x± + hadrons (CC)

⌫x + N �! ⌫x + hadrons (NC)

x 2 {e, µ, ⌧}
(1.46)

19The di↵erence between both results is largely due to di↵erent treatment of hadronic processes: ERS
used a “colour dipole model“, while BERSS uses NLO pQCD.
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Figure 1.12: Feynman diagrams describing deep inelastic scattering of neutrinos o↵
nucleons. Charged-Current interactions (left) and Neutral-Current interactions (right).

Figure 1.13: Neutrino-Nucleon DIS interaction cross-sections for charged-current
(green) and neutral-current (blue) interactions, calculated by [112]. Resonant scattering
of electron antineutrinos o↵ atomic electrons, the Glashow Resonance [113] (red).

where we used ⌫x to denote either ⌫x or ⌫̄x. Given the large (compared to the binding
energy of the nucleon) energy and momentum transfer to the nucleon, the nucleon does not
survive the interaction and fragments into a hadronic particle shower (hadronic cascade).
Depending on whether interaction was mediated by W± (CC) or Z0 (NC), the hadronic
shower is accompanied by a charged leptonic or a (invisible) neutrino as final state. The
corresponding Feynman diagrams are given in Fig. 1.12. The di↵erential cross-sections
can be determined from electroweak theory [114] for isoscalar targets (equal number of
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protons and neutrons). For CC-interactions (inclusive) ⌫`N ! `± + X it reads [114]:

d2�

dxdy
=

2G2

FME⌫

⇡ (1 + Q2/M2

W )2
⇥
xq

�
x, Q2

�
+ xq̄

�
x, Q2

�
(1 � y)2

⇤
(1.47)

For NC-interactions (inclusive) ⌫`N ! ⌫` + X one finds [114]:

d2�

dxdy
=

2G2

FME⌫

⇡ (1 + Q2/M2

Z)2
⇥
xq0

�
x, Q2

�
+ xq̄0

�
x, Q2

�
(1 � y)2

⇤
(1.48)

where the kinematic variables 0  x  1 (Bjorken x) and 0  y  1 (inelasticity) are
defined as [115]

x =
Q2

2ME⌫y
(1.49)

y =
E⌫ � E 0

⌫, l±

E⌫
=

Ehad

E⌫
(1.50)

and Q2 is defined as the negative square of the (four-)momentum transfer from neutrino
to the parton. For leptonic final states l it reads

Q2 = �m2

l + 2E⌫ (El � pl cos ✓l) (1.51)

Finally, the functions q (x, Q2) and q0 (x, Q2) are superpositions of parton distribution
functions for the quark content in protons and are given in [114]. The former read [114]

q
�
x, Q2

�
=

uv (x, Q2) + dv (x, Q2)

2
+

us (x, Q2) + ds (x, Q2)

2
+ ss

�
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�
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�
x, Q2

�

q̄
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x, Q2

�
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us (x, Q2) + ds (x, Q2)

2
+ cs

�
x, Q2

�
+ ts

�
x, Q2

�

(1.52)

where u, d, c and s, t, b denote the structure functions of di↵erent type of quarks, while
the subscripts v and s distinguish between valence and sea contributions.
The average inelasticity < y >, i.e. the fraction of energy channeled into the hadronic
shower, decreases with neutrino energy from ⇠ 0.45 (⇠ 0.35) at 1 TeV to ⇠ 0.2 (⇠ 0.2)
in the ultra high energy limit for (anti)neutrino interactions. For this work we rely on
the cross-section calculation from [112] (CSMS) based on parton distributions functions
obtained with HERA [117], a lepton-proton collider at DESY (and verified against [118]).
The corresponding (anti)neutrino-nucleon cross sections for CC and NC interactions are
shown in Fig. 1.13 and increase with increasing neutrino energy.
While negligible almost everywhere, the total neutrino interaction cross-section is dom-
inated near E⌫ = 6.3 PeV by the Glashow resonance [113], i.e. resonant scattering of
electron antineutrinos of atomic electrons in the ice. The resonance energy corresponds
to the rest mass of the W� boson in the center of mass frame. The branching ratios of
the W� decay can be found in Tab. 1.14. In ⇠ 70% of the cases the final state does not
involve a neutrino, and thus the entire energy is deposited in the detector.
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W�

e�

⌫̄e

⌫`, q̄

`�, q

W� Decay Modes Fraction(�i/�tot)

e�⌫̄e (10.71 ± 0.16) %

µ�⌫̄µ (10.63 ± 0.15) %

⌧�⌫̄⌧ (11.38 ± 0.21) %

hadrons (67.41 ± 0.27) %

Figure 1.14: Glashow Resonance [113]: (Left) resonant s-channel scattering between
electron anti-neutrino and electron, tree level. (Right) the relevant branching ratios
from the W�-decay [116].

Cherenkov Radiation
Cherenkov light is emitted when charged particles propagate through a medium with
refractive index n (�) at a speed � � cn/c0 that is larger than local speed of light in the
medium cn = c0/n (c0: speed of light in vacuum). Hence one can immediately write down
the threshold kinetic energy Ec above which Cherenkov emission will appear

Ec = E0

 ✓
1 � 1

n2

◆�1/2

� 1

!
(1.53)

For electrons in water and ice this becomes Ec ⇡ 0.26 MeV.
The di↵erential photon spectrum can be derived from the Frank-Tamm formula [119]

dN�

dx d�
=

2⇡↵

�2

✓
1 � 1

�2n(�)2

◆
(1.54)

where ↵ is the fine structure constant and x is the path length. Thus for media with
refractive index that only slowly varies with the photon wavelength �, the emission in
the optical band is largest at blue, near-UV wavelengths. The angular emission profile of
Cherenkov radiation is sharply peaked at the Cherenkov angle ✓c.

cos ✓c =
1

n�
(1.55)

For highly relativistic particles (� ⇡ 1) propagating through ice (nice ⇡ 1.33 [80]) the
Cherenkov angle is ✓c ⇡ 41�. The energy loss from Cherenkov emission is completely
negligible compared to other energy-loss mechanisms experienced by charged particles
propagating through a medium [120]. It follows from eq. (1.54) and (1.55), that the total
number of Cherenkov photons radiated in a finite wavelength band per unit track length
is independent of particle energy (� ⇡ 1). For IceCube one finds ⇠ 250 cm�1 [121].

Neutrino Induced Cascades
The (essentially) only energy loss mechanism for electrons in matter at relevant energies
above 100 GeV is energy loss via bremsstrahlung in the electric field of atomic nuclei:
ZA + e± ! ZA + e± + �. The di↵erential cross-section for this Bethe-Heitler process in
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Figure 1.15: Simulation of an electromagnetic cascade initiated by a 100GeV electron
in ice using Geant4 (Figure from [122])

the relativistic limit � ! 1 is given by [120]
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with E0 is the total energy of the incident electron. E 0
0

= E0�E� denotes the total energy
of the scattered electron, and E� is the energy of the radiated photon. Similar to the case
of proton energy losses, it is useful to define the radiation length via dE/ds = �E0/X0,
i.e. as the distance over which the energy of the electron is reduced by a factor of 1/e. It
is given approximately via

1

X0

= 4Ng↵Z(Z + 1)

✓
e2

mc2

◆2

ln
183

Z1/3

⇥
cm�1

⇤
(1.57)

where Ng is the atomic density of the material. For electrons in water one finds ⇠
36 g · cm�2 (⇠ 36 cm) [120].
The emission of photons via bremsstrahlung quickly initiates an electromagnetic cascade,
since the emitted photons in turn can undergo pair-production � + p �! p + e+e� and
produce pairs of electrons and positrons that will lose energy via bremsstrahlung. The
interaction length of pair production is similar to that of bremsstrahlung. In the high
energy limit it reads [116]

Lpair =
9

7
⇥ X0 (1.58)

The development of the electromagnetic cascade continues until the energy of the particles
in the cascade drops below a certain threshold, below which energy loss is dominated by
ionization.

In ice this critical energy is Ec = 80 MeV [122]. For high energy cascades the total
Cherenkov light emission scales linearly with the energy of the cascade, which forms the
basis for energy reconstruction methods in IceCube. The longitudinal energy loss profile of
a cascade in ice can, to a good approximation, be parametrized20 by a gamma-distribution
(in units of the radiation length ⇠ = s/X0) [122]:

dE

d⇠
= E0b

(b⇠)a�1 e�b⇠

� (a)
(1.59)

20derived from GEANT4 simulations of electromagnetic cascades in ice
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Figure 1.16: Energy loss rates for di↵erent energy loss mechanisms during propagation
of electrons (left) and muons (right) through a medium (Figure from [123])

For water the following parameters have been found: a = 2.0 + 1.45 log
10

(E0/GeV ) and
b = 0.63 [122], corresponding to a fractional energy loss of 90% within a distance of ⇠ 8 m
from the vertex of the neutrino interaction for a 100 TeV cascade.

Hadronic cascades related to the fragmentation of a nucleon that was struck by the neu-
trino, behave qualitatively similar to their electromagnetic counterparts. The physics is
more complex, since in addition to electromagnetic processes, hadronic processes (e.g.
pion production and decay) contribute to the development of the cascade. Due to Ice-
Cube’s coarse instrumentation the di↵erences between purely electromagnetic showers
and mixed showers of hadronic origin cannot be resolved experimentally. Hadronic
cascades are thus modeled as electromagnetic cascades with reduced light yield, i.e.
with lower energy to account for neutral hadrons. A light-reduction factor Eeff

had =
⌘ (Ehad) ⇥ Ehad has been derived from GEANT4 simulations [80]. The average light
correction at an energy of ⇠ 100 GeV (⇠ 1 PeV) is ⌘ ⇠ 0.7 (⌘ ⇠ 0.9).

Energy Loss of Muons in Ice
At relevant energies the energy loss of muons has a richer phenomenology than that of
electrons, since di↵erent energy loss mechanisms contribute: ionization, bremsstrahlung,
pair-production and photo-nuclear interactions. The first is responsible for a continuous
energy loss rate close to that of minimum ionizing particles ⇠ 2 MeV/(g/cm2) for muon
energies Eµ ⌧ 1 TeV. The latter three radiative processes become important at ⇠ 1 TeV.
These are stochastic processes that increase the average energy loss rate roughly linearly
to the muon energy [123]

� dE

dX
⇡ a + bE (1.60)
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with a = 0.249 GeV/mwe and b = 0.422 · 10�31/mwe21. Since the muon is heavier than
the electron (mµ/me ⇠ 200) the muon energy loss due to bremsstrahlung is suppressed
compared to that of the muon by a factor of (mµ/me)

2 ⇠ 4 ⇥ 10�4 (c.f. eq. (1.56)).
Therefore the muon appears track-like rather than shower-like in a detector like IceCube.
A comparison between the di↵erent energy loss processes can be found in Fig. 1.16 for
electrons (left) and muons (right).

21mwe ⌘ meterwater equivalent
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Chapter 2

The IceCube Detector

2.1 Instrumentation

The IceCube detector consists of 86 cable strings that have been melted into the glacial
ice at the South Pole on the Antarctic continent using a hot water drilling technique [126].
Each cable string carries 60 DOMs (Digitial Optical Modules) with a separation of 17 m
and instruments the depth between 1450 m to 2450 m. The strings are distributed on a
hexagonal grid with a typical separation of ⇠ 125 m. The resulting array of DOMs covers
a total volume of about 1 km3 of ice, required to detect a neutrino flux at the level of the
Waxman-Bahcall bound within a couple of years of operation. A schematic view of the
detector geometry is given in Fig. 2.1 (top). At the bottom of the detector there exists a
central region of increased instrumentation, the DeepCore infill array. It consists of eight
specialized strings with reduced separation distance (72 m average) together with seven
standard IceCube strings. This lowers the energy threshold from ⇠ 100 GeV (IceCube) to
⇠ 10 GeV (IceCube-DeepCore). In addition to the in-ice component, there exists an air-
shower array, IceTop, on the surface. It aims at characterizing the cosmic-ray properties
in the knee region of the cosmic-ray spectrum but for the purpose of this work is of no
further relevance. IceCube construction started in 2005 and finished at the end of 2010.
Data taking began immediately after deployment of the first string in partial detector
configurations, referred to as IC-N , where N denotes the number of operational strings.

The Digital Optical Module
Each of IceCube’s 5160 detection units, DOMs, consists of a Hamamatsu R7081-02 large
area photomultiplier tube (PMT) with a 10 in diameter. The PMT is protected by a
borosilicate glass sphere with a thickness of 1.3 cm [127] against the pressure of the ice
(maximally 70 MPa) [111]. The PMT is shielded from Earth’s magnetic field by a metal
grid. In addition to the PMT the glass sphere houses the DOM mainboard that holds
the electronics required for the data acquisition. In addition to the mainboard the glass
sphere contains the flasher board the controls several LEDs within the DOM. These
LEDs provide an artificial light source (405 nm) that allows for in-situ calibration of the
detector. A schematic view of the DOM is given in Fig. 2.1 (bottom left).
The PMTs are operated at a nominal gain of � = 107 (U = 1.3 kV) which produces
single photon pulses of 8 mV [127]. This amplification of the single photon signal is
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Figure 2.1: Overview over the instrumentation of the IceCube Observatory (top),
credit: IceCube Collaboration. Structure of IceCube’s Digital Optical Modules (DOMs)
(bottom left, Figure from [124]. Photon Acceptance of IceCube DOM as function of
photon wavelength (bottom right, Figure from [125]).

achieved in 10 dynode stages. The quantum e�ciency ⌘ (�) of the IceCube PMT peaks
at a wavelength of � = 390 nm with ⌘max = 0.25. The (dark) noise rate of the PMTs
is ⇠ 300 Hz at relevant temperatures (�20� and �40�) [127] and is believed to be due
to decays of radioactive elements that contaminate the glass (e.g. K40). Compared
to the raw PMT, the DOM has a lower quantum e�ciency ⌘max = 0.13, limited by
photon transmission through the glass (and optical gel that couples PMT and DOM).
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The wavelength dependence of the DOM’s photon acceptance is given in Fig. 2.1 (bottom
right). The DOM is essentially insensitive to photons with wavelengths below (above)
� ⇠ 300 nm (� ⇠ 700 nm). The PMT response to photons has been demonstrated to
be linear up to instantaneous photocurrents of 50 mA, above which the PMT enters the
saturation regime and its response becomes non-linear [127]. DOMs in the saturated
regime are not used in this work.

2.2 Optical Properties of the Ice at the South Pole

The glacial ice at the South Pole has been (and continuously is formed) from compacting
snow on top of it. Therefore the age of the ice increases as a function of depth towards
the bottom of the glacier (bed rock) at ⇠ 2900 m. The relevant time scale for this process
is O(105)y [129]. The ice is layered since the rate at which snow is deposited on top of
the glacier varies with time. The compacted snow contains dust and ash impurities. Its
concentration follows that of the atmosphere in the past and can be related to volcanic
activity [130]. Measurements of optical properties of the ice at the South Pole at varying
depths can be correlated with similar measurements at other locations on the Antarctic
continent [131][132] where the age-depth relationship of the ice is known from ice-core
dating [129]. The estimated age of the ice at the top of IceCube (1450 m) is ⇠ 25 · 103 y
and increases towards its center (1950 m) to ⇠ 65 · 103 y [129]. At shallow depths below
⇠ 1400 m the ice contains air-bubbles that strongly scatter light. The pressure at greater
depths is su�cient to compress these bubbles and gas clathrates are formed that resemble
pure ice [133] and strongly increase the optical quality of the medium at IceCube depths.
By using data from IceCube’s LED calibration system, a model for the scattering and
absorption coe�cients as function of vertical depth has been developed, the South Pole
Ice (SPICE) model [125]. The result is shown in Fig. 2.2 (magenta line, left: absorption,
right: scattering). In the clearest part of the detector the measured absorption length

Figure 2.2: Optical properties of glacial ice at the South Pole: Measurements of
the photon absorption and e↵ective scattering lengths using IceCube’s LED calibration
system. (Figure from [128])
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approaches ⇠ 250 m, which is larger than the e↵ective scattering1 length of ⇠ 90 m. Thus
a significant fraction of light emitted by cascades is scattered before it reaches a PMT,
limiting IceCube’s cascade angular resolution compared to tracks. It is worth pointing
out that there exists a region of very poor optical ice properties in the center of the
detector with absorption (e↵ective scattering) lengths as low as ⇠ 20 m (⇠ 5 m), which
is called the dust-layer. Experimentally, the calibration data provides constraints at a
wavelength of � ⇠ 400 nm. Parameterizations exist that allow for a determination of the
optical properties of the ice at di↵erent wavelengths from the ones measured at 400 nm
[125]. The model includes the so-called tilt of the ice: at the bottom of the detector
the ice-layers do not run perpendicular to the z-direction but are tilted. In addition, the
model has been refined to account for anisotropy in the transport of light: the scattering
length has been found to change with azimuthal direction presumably related to the flow
of the glacier relative to the bedrock. This reduced the scattering along this direction by
⇠ 8% relative to the orthogonal direction [128]. We will refer to this refined model as
SPICE-Lea, which defines the baseline for this work and is shown in Fig. 2.2 (black line,
left: absorption, right: scattering) as well.

2.3 Data Acquisition, Processing and Filtering

The data recording and digitization of the PMT signals is done in a decentralized fashion
[134]. The mainboard in each DOM hosts a FPGA (Field Programmable Gate Array)
chip that implements the trigger logic, as shown in Fig. 2.3 (left). A simple trigger
threshold corresponding to 0.25 p.e.2 is set. If the trigger threshold is crossed, a local
coincidence (LC) signal is sent to the neighboring DOMs on the same strings. If at least
one neighboring DOM is triggered within a time window of 1µs, the DOM satisfies the
local-coincidence criterion (HLC = hard local coincidence). If HLC is satisfied, the data
is recorded over a period of 6.4µs, otherwise only a 75 ns window around the peak current
within the first 400 ns is kept. Each mainboard is equipped with two ATWD (Analog
Transient Waveform Digitizer) chips and one FADC (Fast Analog to Digital Converter)
chip. The former can record high resolution waveforms (3.3 ns bins over ⇠ 450 ns) while
the latter records the waveforms more coarsely (25 ns bins of 6.4µs). If HLC is satisfied,
the first 450 ns of the event are digitized by the ATWD before the FADC takes over.
AWTD digitization su↵ers from 29 µs dead-time and is the reason for the second ATWD
chip which, together with the HLC criterion, essentially eliminates dead time. Three
pre-amplifiers (multipliers 0.25, 2, 16) control the dynamic range of the ATWD.
The recorded data is sent to the surface, where the information from all DOMs is com-
bined into events. This step depends on global trigger criteria. In this work we (im-
plicitly) require the SMT-8 (single multiplicity trigger) criterion. These are events that
contain at least 8 DOMs that recorded HLC signals within a sliding time-window of 5 µ s.
Most of these triggers stem from atmospheric muons, with a rate that is more than 6
orders of magnitude larger than that of neutrinos. Since satellite bandwidth is limited
(⇠ 100 GB/d), only a fraction (⇠ 15%) of all triggered events can be transmitted via

1The e↵ective scattering length relates to the scattering length via the average deflection angle at
each scatter �e = � 1

1�<cos ✓>
2The unit p.e. (# of photo electrons) is a measure of the total charge recorded by the PMT. 1 p.e.

corresponds to the total charge created by one photon.
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Figure 2.3: Schematic overview over relevant electronics inside each IceCube DOM
(left, Figure from [134]). Coordinate system used to describe events in IceCube (right,
credit: IceCube Collaboration).

satellite for further o✏ine analysis in the North3. The decision is based on several online
filters using criteria obtained from fast online reconstruction algorithms. All events stud-
ied in this work were selected by the cascade-filter (“Cascade-Level2“), designed to select
events that are broadly consistent with a shower-like signature. The electron neutrino
e�ciency with respect to all SMT-8 filtered events is > 70% for electron neutrino events
above 1 TeV and increases further with energy (⇠ 90% at 1 PeV), while ⇠ 98% of the
atmospheric muon background is removed at this step. The passing rate is ⇠ 30 Hz4

[135]. Upon arrival at computing facilities in the Northern Hemisphere, further o✏ine
processing of the data is applied. This include additional event reconstruction and further
filtering. Of interest to this work is an additional cascade-filter (“Cascade-Level3“). It
retains about ⇠ 40% of all electron neutrinos that pass Cascade-L2 but rejects another
⇠ 99% of the atmospheric muon background [136].

2.4 Event Signatures and Reconstruction

The instrumentation discussed above generates two main signatures: cascades, i.e. elec-
tromagnetic or hadronic particle showers in the ice and tracks from muons propagating
through the detector. Since a particle shower deposits all available energy within a small
distance (several meters) compared to the distance between the strings, its Cherenkov
emission appears approximately point-like. Due to photon scattering in the ice, a sig-
nificant portion of the directional information related to the angular emission profile of
Cherenkov radiation is lost and the photon distribution in the detector appears spherical.
The remaining directional information is related to photon arrival times: PMTs in front
of the cascade will on average register earlier photons (green) than the PMTs behind
the cascade, which register a larger portion of late photons (blue) as shown in Fig. 2.4
(top left). The figure also shows an event view of a 2 PeV neutrino induced cascade,

3North = civilized world
4Hz=# events/s
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Figure 2.4: Event signatures in IceCube: cascades (left) and muon tracks (right). Raw
photon signature from simulation (top, credit: IceCube Collaboration) and recorded
signature by IceCube DOMs in data (bottom, from [5]).

recorded by IceCube (bottom left). For such events the energy can be determined to
within ⇠ 15%, dominated by systematic uncertainties. The median angular resolution,
however, is rather poor (> 10�) [137]. Muons instead can traverse the entire detector,
leaving behind a track formed by the Cherenkov photons, Fig. 2.4 (top right and bottom
right). The presence of the track allows for much better directional reconstruction of
tracks than cascades. For high energy through-going tracks median angular resolutions
of < 1� can be achieved. However muon energy estimation is more di�cult since for
a muon that traverses, enters or leaves the detector, only a fraction of the total muon
energy loss is observed.
The di↵erent signatures allow for (limited) particle identification. Electron neutrinos pro-
duce cascades via ⌫N DIS, and so do tau neutrinos at energies relevant for this work5.
Muon neutrino interactions (CC) instead give rise to starting tracks: a cascade is ini-
tiated at the interaction vertex from the hadronic fragmentation of the target nucleon
and a track is formed by the out-going muon - and thus these events are sometimes re-
ferred to as hybrid events. We will use both terms interchangeably. Muon neutrinos can
also produce “pure“ cascades via NC interactions. Finally, it is worth pointing out that
down-going tracks that traverse the detector are most likely associated with atmospheric
muons rather than muon neutrinos.

Waveform Calibration and Pulse Extraction
Before further analysis (reconstructions) is performed the raw data recorded in each DOM
needs to be calibrated and corrected for e↵ects from the DOM electronics. This includes
baseline subtraction, i.e. the digitizer reading in absence of any signal, and gain correction

5di↵erent ⌫⌧ signatures are possible at highest energies E � 1PeV [138]
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in order to convert the raw ADC counts into measured voltages. Additional corrections
are needed to account for the transit time, the time needed for a pulse to propagate
through the PMT and electronics. Finally, the waveform is corrected for transformer
related distortions (droop).
The information relevant for reconstruction can be summarized in light pulses, charac-
terized by the photon arrival time and total charge of the pulse, related to the number
of photons. Due to finite time resolution, pulses are smeared in time ⇠ 2 ns. A bright
waveform will consist of the superposition individual single photon pulses. Since the
pulse shape for single photons is known from calibration, an unfolding algorithm is used
to ”de-convolve” the calibrated waveform in a set of individual photon pulses [137][126].

Reconstructed Variables and IceCube’s Coordinate System
A cascade in IceCube is fully characterized by seven variables: vertex time t0 (time of
interaction), vertex position x0, y0, z0, direction ✓0, �0 and energy E0. Throughout this
work we will measure these variables using the IceCube coordinate system. Its origin is
centered in the detector at a depth of 1948 m, thus the top (bottom) of the detector is
at z = 500 m (z = �500 m). The angles ✓0 (zenith) and �0 (azimuth) are specified with
respect to the direction where the neutrino came from, rather than the direction along
which the cascade develops (opposite). Vertically down(up)-going events are associated
with cos ✓0 = 1.0 (cos ✓0 = �1.0). This is shown in Fig. 2.3 (right)

Reconstruction Algorithms
The standard algorithm for the reconstruction of cascade properties, employed in this
work, is Monopod [137][139]. Monopod relies on the method of maximum likelihood (c.f.
Sec. 5.3). In particular it implements a binned poisson-likelihood function, eq. (5.15).
Consider light emission from a cascade with true parameters (t0, x0, ✓0, �0, E0). The
corresponding data recorded in each DOM o is segmented into bins. Within each bin,
centered at time ti, the observed number of photons (after pulse extraction) is assumed
to follow a Poisson distribution with expectation µi,o (t0, x0, ✓0, �0, E0). Since the total
Cherenkov light yield of a cascade is linearly proportional to its energy, the expectation
µi,o can be related to that of a template cascade ⇤i,o (t0, x0, ✓0, �0) with energy 1 GeV

µi,o (t0, x0, ✓0, �0, E0) = E0 ⇥ ⇤i,o (t0, x0, ✓0, �0) + ⇢o (2.1)

where we added the noise contribution ⇢o to bin i of DOM o.
A large scale simulation of template cascades with varying (discrete) directions and po-
sitions in the detector has been performed using Photonics [140] and the corresponding
light yield tabulated as a function of true cascade parameters. The resulting tables were
interpolated using B-spline surfaces [137]. This allows to obtain for each DOM o and
time bin i the expected light yield ⇤i,o (t0, x0, ✓0, �0). The log-likelihood function (up to
terms independent of the parameters) becomes

log L (t, x, ✓, �, E |X) =
DOMsX

o

binsX

i

qi,p log (E ⇥ ⇤i,o + ⇢i,o) � (E ⇥ ⇤i,o + ⇢i,o) (2.2)

where X denotes the measured pulses (total charge and time) in all DOMs. Minimizing
the negative log-likelihood numerically using gradient descent methods (in combination
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Figure 2.5: Analytic photon delay time distribution (Pandel [143]) with non-
parametric spline fit. (Figure from [144])

with Newton’s method to solve for the energy in each step) yields the best-fit, recon-
structed values t̂, x̂, ✓̂, �̂, Ê.

Several other reconstruction algorithms exist that are faster but less precise. Given their
speed, they can be applied to large data samples. For the purpose of this work they
are used to either define cut variables, or more importantly, to provide a starting point
for Monopod. The performance of numerical minimization in several dimensions and
complicated likelihood spaces hinges strongly on the accuracy of the starting point.
A simple estimate of a cascade vertex can be obtained from the center-of-gravity (cog)
calculation. It is a simple weighted average of the three-dimensional positions of all DOMs
that recorded light during the event.

xcog =

P
o woxoP
o wo

, wo ⌘
 
X

o

Qo

!↵

(2.3)

where Qo is the total charge recorded by DOM o. Assuming spherical emission of light
at the local speed of light, the vertex time t0 corresponding to the cog vertex estimate
can be obtained [141].
A first guess for the cascade direction can be obtained from considering the tensor-of-
inertia of the DOM hits, where the total charge Qo, observed in DOM o, serves as mass.

Iij =
X

o

Q↵
o

�
�ijx

2

o � xo,ixo,j

�
(2.4)

An improved estimate of the interaction vertex x0 and time t0 can be obtained from
CascadeLlhVertexFit [142]. It uses the arrival time of the first pulse to1 observed in each
DOM to formulate the following negative log-likelihood function

� ln L (t0,x0|to1,xo) = �
X

o

ln po (to1,xo|t0,x0) (2.5)
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where the photon arrival time distribution is given by an analytic function, the Pandel -pdf
[143], which assumes a homogenous medium and ignores the complexity of the realistic
ice-model. In the calculation only time delays with respect to the naive arrival time,
expected from direct propagation at the local speed of light, are considered. An example
is shown in Fig. 2.5.

In the context of this work, muon tracks are considered as background. Correct recon-
struction of muon tracks helps identifying them. Therefore in addition to the cascade
reconstruction methods discussed above, we also incorporate track reconstruction algo-
rithms into this analysis. From the perspective of reconstruction, the di↵erence between
cascades and tracks is that the latter serves as a light source that moves through the
detector at the speed of light, while the former is considered a stationary source.
A simple track reconstruction algorithm is the LineFit [145]. It considers a planar light
front that propagates through the detector with velocity v0 along the track direction.
Thus the physics of Cherenkov emission, photon transport in inhomogenous ice and de-
tector noise is ignored. The problem then reduces to linear regression in three dimensions,
with time as predictor.

x̂0, v̂0 = argmin
x,v

(
�
X

i

(xi � (x + v · ti))
2

)
(2.6)

where the sum runs over all hits in all DOMs at position xi and time ti.
The result from LineFit serves as seed for a likelihood based track reconstruction: SPEFit
[146]. The implementation is very similar to that of CascadeLlhVertexFit in that the
likelihood uses the analytical Pandel delaytime pdf. The di↵erence between both is
simply that SPEFit likelihood considers time delays with respect to a moving source,
while the cascade reconstruction considers a stationary light source [80]. Throughout
this work we do not use track reconstruction algorithms that attempt to reconstructed
the muon energy. The final sample will be dominated by cascades and the final energy
measurement is performed using the Monopod cascade reconstruction.

2.5 Event Simulation

Data analysis in IceCube relies on extensive Monte Carlo simulations that model all
relevant processes involved in the generation of experimental data:

1. Generation of Primary Particle, Propagation and Interaction

2. Charged Lepton Propagation

3. Propagation of Cherenkov Photons

4. Response of Detector Electronics to Light Signals

The simulation of neutrino events is performed using the neutrino generator (NuGen)
software. NuGen is a customized version of the ANIS neutrino generator [147], designed
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for better compatibility with other IceCube software. NuGen generates neutrinos within
some energy range following a probability distribution determined from the assumed
neutrino flux, usually a power-law. Each neutrino is injected at Earth’s surface and then
propagated towards the detector taking into account all standard model neutrino inter-
actions in matter. Here the Earth is described by the Preliminary Earth Model (PREM).
Upon arrival at the detector a neutrino interaction is simulated with a random vertex
position a long the neutrino trajectory crossing the detector and secondary particles are
generated.
Muons produced inside (or near) the detector are then propagated and their energy losses
simulated using the MMC [123] or Proposal [148] packages. Cascades below 1 TeV are
simulated as stationary light emitters, while the elongation of cascades at higher energies
is taken into account by placing discrete energy losses (stationary emitters) along the
trajectory following the longitudinal shower profile from eq. (1.59).
The computationally most expensive step is the simulation of the photon transport
through the inhomogeneous ice, since each individual photon has to be tracked. This
is performed using the software packages CLsim [149] or PPC [150].
Finally the response of the detector electronics to the Cherenkov photons is simulated.
This includes simulation of detector noise during the time period of the event, physical
processes related to the PMT and the digitization process (DOM electronics). The re-
sulting simulation data is then treated like real data and subject to further filtering and
processing.

Background events (atmospheric muons) are generated using CORSIKA (Cosmic Ray
Simulations for Kascade) [151]. CORSIKA simulates particle production in cosmic ray
induced atmospheric air-showers. The composition is taken into account by focusing on
five representative cosmic ray primary nuclei (H, He, N, Al, Fe), each representing the
corresponding mass group (c.f. Sec. 1.1). Of particular interest is the muon yield (muon
bundles and single muons) from such showers. Once the muons reached the surface, they
are further propagated towards the detector using the MMC/Proposal packages.
Since full simulation of the air-shower development is computationally expensive, re-
sources can be saved by generating muon events from parameterizations of the muon
yield near the detector derived from CORSIKA and Proposal. Such parameterizations
have been obtained in [139] and implemented in MuonGun, a fast generator of single muon
events. However, since MuonGun does not account for any contribution from bundles of
muons, it can not describe experimental data - unless filter conditions (event selection)
can be shown to e�ciently remove muon bundles.
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Chapter 3

Event Selection

The dataset analyzed in this dissertation consists of IceCube data recorded in a four year
period covering the years 2012 to 2015. The selection criteria presented in this chapter
have been developed using only a fraction (10%) of the total dataset in order to avoid
introducing selection bias by the analyzer. This so-called blind analysis approach is a
standard requirement within the IceCube Collaboration1. Our goal is to devise filtering
criteria that reduce the atmospheric muon background from being dominant over the
neutrino component (factor of ⇠ 450) to a subdominant level (< 10%). Of particular
interest are neutrino-induced cascades (c.f. Sec. 2.4), since they have a lower contribution
from atmospheric neutrinos compared to muon neutrino induced (starting) tracks (c.f.
Sec. 1.7) and provide excellent sensitivity to the astrophysical flux of electron and tau
neutrinos. In addition to a cascade-signal sample (c.f. Sec. 3.2.7 and Sec. 3.2.8), we will
define two control samples that constrain the properties of the non-electron (and non-tau)
neutrino backgrounds. First, muon neutrinos that interact via the neutral current channel
(NC) produce cascades that give rise to an irreducible background from atmospheric
neutrinos2. By isolating a control sample of starting tracks (c.f. Sec. 3.2.6) consisting
almost entirely of muon neutrinos from conventional atmospheric origin interacting via
the charged-current channel, we will be able to e↵ectively constrain the corresponding
muon neutrino NC contribution to the cascade signal sample, since the ratio between the
DIS interaction cross-sections for NC and NC interactions are known well [112]. Finally, in
order to characterize and constrain the remaining residual contribution from atmospheric
muons to the final cascade sample, we will define a muon control sample which consists
mostly of single muon events with a cascade-like event signature (c.f. Sec. 3.2.8).

The biggest challenge throughout the development of this event selection was posed by
the comparably small amount of available cosmic-ray air-shower simulation (CORSIKA
[151]). We were able to overcome this problem by demonstrating that, as a function
of increasing neutrino purity, the cosmic-ray background reduces to single muons. This
selection identifies bundles of muons as background which we remove from the sample
(c.f. Sec. 3.2.4). This allows to replace full air-shower simulation by a faster and more
e�cient single muon simulation (MuonGun [139]).

1There are variations as to what defines a blind analysis across di↵erent experiments and di↵erent
fields.

2This argument ignores the suppression from the atmospheric neutrino self-veto e↵ect, c.f. Sec. 4.2.3
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Another di�culty is created by improvements in the IceCube online and o✏ine filter
and processing streams that introduce variations in the filter rates across the early years
(2011-2013) and impact the very background-like region of this analysis. We will show
that this event selection unifies the rates observed in data (and simulation) as well as the
shapes of all relevant observable distributions for all years (c.f. Sec. 3.2.4). This allows
to perform the final statistical analysis using one set of simulations for the entire data
sample which significantly lowers the computational burden.
The central piece of the event selection is a multi-class gradient-boosted decision tree
model [152] that we apply to each event satisfying a set of pre-selection criteria (c.f.
Sec. 3.1). Based on this model, for each event we assign three scores (class membership
probabilities) corresponding to the three di↵erent classes of events: cascades, starting
tracks and atmospheric muons (c.f. Sec. 3.2). Using these scores we either remove
the event from the analysis, or we assign them into one of the three mutually exclusive
samples: the cascade signal sample (c.f. Sec. 3.2.7) and the two control samples: one for
starting tracks (c.f. 3.2.6) and one for single muons with a nearly cascade-like signature
(c.f. Sec. 3.2.8).
Finally, we will show that another event selection, developed at Stony Brook University
[153], specifically designed to target high energy cascades with E > 60 TeV, provides
higher signal-e�ciency than the one presented here at highest energies. Thus for the
measurement of the astrophysical neutrino flux (c.f. Sec. 6) will use both, the low-
energy selection developed here and the dedicated high energy selection from [153] with
a transition at a reconstructed energy Erec = 60 TeV (c.f Sec. 3.3).

3.1 Pre-Selection: Cleaning the Data Sample

IceCube’s online and o✏ine filtering streams, while significantly reducing the muon back-
ground rates compared to the rate at which the detector is triggered, can be viewed as
rather loose selections. They are not designed to provide a set of high quality neutrino
events, rather, they are intended to be a common starting point with reduced data vol-
ume for the di↵erent analyses that target widely di↵erent physics topics and disparate
(by orders of magnitude) energy ranges. Here we define high-quality events as events that
are well-reconstructed and well-described by simulations. As we will show, the agreement
between data and MC simulations at the starting point of this analysis, IceCube’s cascade
filter, is rather poor in some regions of observable space, for example mis-reconstructed
events at high energies, dominated by mis-reconstructed muon bundles. Thus at this stage
we cannot consider the MC simulations to be a su�ciently accurate representation of all
important data-generating processes involved. Our intention is to model the di↵erences in
observable space between the di↵erent types of events (signal and background) by means
of machine learning. Thus, before fitting such a model, we first need to improve upon the
agreement between the observed data and our simulations. This is done by identifying
and removing events that appear to cause the observed discrepancies. These cleaning
cuts are discussed below and we will subsequently refer to them as “Level4“-cuts.
Our approach to cleaning cuts di↵ers from other IceCube analyses in that we have to
satisfy one important condition. We have to find cleaning cuts that do not reject too
much background (and thus do not drastically lower the overall data rate). This might
appear contradictory at first, since rejecting background is what we want after all. The

43



Chapter 3. Event Selection

reason is that fitting a complex machine learning model requires a su�ciently large sam-
ple of simulated background events. Rejecting too much background at the cleaning stage
of this analysis would decrease further the already small sample of available air-shower
simulation (CORSIKA). Our pre-selection reduces the background rate (data rate) by
⇠ 30%, while the final machine learning selection achieves a reduction of background by
⇠ 4 orders of magnitude.
Finally, during the development of the event selection, essentially no CORSIKA simula-
tion was available matching the exact detector/filter configurations for the years 2012-
2015, that are relevant for this work. The most recent and su�ciently large simulation
dataset uses the detector configuration from the year 2011, and hence, this dataset is/was
used for the development of all selection criteria. The agreement between data/MC in
the background region is then evaluated using the corresponding 10% test-sample of the
2011 experimental data. As we will show using newer simulations that were produced
during development of this analysis, the data/mc agreement obtained after the cleaning
cuts generalizes well to the 2012-2015 detector configurations.

3.1.1 Definition of Variables

Throughout this chapter a set of variables/observables will be used that can be grouped
according to their purpose:

Group 1: Estimated/Reconstructed Energy Deposition

• Monopod.energy (from Monopod cascade reconstruction)

• Total Charge of all PMTs

Group 2: Estimated/Reconstructed Position of Interaction Vertex

• Monopod.z (from Monopod cascade reconstruction)

• Monopod.XYScale (based on Monopod cascade reconstruction)

• Depth of First Photon Hit

• Depth of DOM with Maximum Charge

Group 3: Reconstructed Arrival Direction (Zenith Angle)

• Monopod.zenith (from Monopod cascade reconstruction)

• LineFit.zenith (from LineFit track reconstruction)

• Track.zenith (from SPEFit track reconstruction)

Group 4: Quality of Reconstruction
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• Cascade.rlogl (from CascadeLlhVertexFit cascade reconstruction)

• Track.rlogl (from SPEFit track reconstruction)

• Reconstructed Vertex Separation (from CascadeLlhVertexFit and Monopod
cascade reconstructions)

Group 5: Identification of Incoming/Outgoing Muons

• Photon Delay Time (based on Monopod cascade reconstructed vertex position)

• Veto Track Charge (based on Monopod cascade reconstructed vertex position)

• Starting Track Charge (based on Monopod cascade reconstructed vertex posi-
tion)

These variables represent a mixture of rrobust low-level estimates of event properties with
more elaborate and precise high-level calculations. Similarly this set includes variables
that are more appropriate for the reconstruction of cascades, the signature of interest
for this work, and variables that are better suited for track reconstruction that help to
identify, characterize and reject muon background. All variables, except for the energy
estimate from Monopod (Monopod.energy) and the DOM with maximum charge (Max-
ChargeDOM) will be used in the gradient boosted decision tree model (c.f. Sec. 3.2).
Each variable is explained below.

Monopod.energy, Z-position, XYscale and Zenith

Monopod (eq. (2.1)) is the most sophisticated maximum likelihood reconstruction tech-
nique employed in this work. Its reconstructed energy, reconstructed z-coordinate of the
vertex position and reconstructed zenith angle are used directly as observables. As we
will show later on, atmospheric muon background contributes strongest near the detector
boundaries and for down-going trajectories. However for the purpose of distinguishing
neutrinos from atmospheric muons not all information from the reconstructed vertex po-
sition (x,y-coordinates) is useful. As far as the x,y-coordinates are concerned, almost
all information is contained in the distance of the reconstructed vertex position in the
XY-plane to the detector boundary. Thus it is possible to reduce the dimensionality by
one. Following [154] we introduce the variable “XYscale“ which measures the position of
the Monopod reconstructed vertex in the XY-plane relative to the boundary on a linear
(dimensionless) scale bounded from below at XYscale = 0 (vertex located in the center of
detector). The polygon that defines the detector boundary corresponds to XYscale = 1,
i.e. events reconstructed with vertices corresponding 0  XYscale  1 are considered
inside the detector while XYscale > 1 are considered outside the detector (in the XY-
plane). Additional information about the details of the implementation can be found in
[154].
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Total PMT Charge: QHLC
tot

The total charge per event collected by all IceCube DOMs constitutes a simple variable
that correlates with the energy deposited by charged particles in the detector: low-energy
events produce less charge than high-energy events. The total charge does not allow for
a precise estimate of the energy deposit because it also depends on the position of the
interaction relative to the nearest DOMs. Events close to a string produce more visible
charge in the detector than events of similar energy with vertices at larger distances to the
nearest strings. While dedicated energy reconstruction algorithms provide far superior
energy estimates, the total charge is a good indicator as to the information content in
the event. Brighter events can be reconstructed with better accuracy. Finally, when
calculating QHLC

tot we only consider those pulses from the PMTs that satisfy a hard local
coincidence (HLC) criterion (c.f. Sec. 2.3) to reduce the contribution from detector noise.
The total charge is measured in units of number of photo electrons (p.e.) equivalent the
total charge.

DOM with Maximum Charge

IceCube DOMs are enumerated along each string by integers ranging from 1 (top of
detector) to 60 (bottom of detector). The variable “VetoMaxChargeDOM“ refers to the
DOM number of the DOM that collected the largest amount of charges compared to all
other DOMs. For cascade-like energy deposits one expects this to be the DOM that is
closest to the interaction vertex with some dependence as to the direction of the photon
emission, since DOMs behind the Cherenkov cone receive less charge. Thus, this variable
is rough estimate of the z-position of the event inside the detector. In particular it does
not require assumptions as to the nature of the energy deposit: cascade-like or track-like.

Depth of First Hit

The z-position of the DOM that registers the first photon hit in the event is very in-
formative about whether a cascade event inside the detector might be associated with
a incoming track. The closer the depth of the first photon hit is to the top of the de-
tector, the more likely the event is cause by a muon that penetrated into the detector
from above. Since individual photon hits could also be due to detector noise, it is nec-
essary to first apply a noise cleaning algorithm to all registered pulses from all DOMs
in the event that removes noise pulses. We will subsequently refer to this variable as
“VetoMaxChargeDOM“.

LineFit Zenith Angle

The LineFit (c.f. eq. (2.6)) provides a very simple estimate for the arrival direction for
track-like events. In the context of this work, we only utilize the reconstructed zenith
angle. Atmospheric muons are more likely to be associated with down-going directions
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than neutrino events. LineFit does not provide a good directional estimate for cascade-
like events and thus its distribution appears more uniform. Therefore the signal-to-
background ratio depends on the zenith angle reconstructed by LineFit.

SPEFit Zenith Angle

Another, more elaborate estimate of the arrival direction of track-like events can be
obtained from the SPEFit [146]. The scope of this variable for the purpose of this work
is similar to the one of the LineFit zenith angle. While both variables are correlated
for well-reconstructed tracks, their estimates di↵er for events that are less well described
by a track hypothesis. Thus the combination of both variables carries extra information
beyond the individual directional estimates.

Track rlogl (SPEFit rlogl)

The SPEFit also provides an estimate of its fit quality: the SPEFit reduced log-likelihood.
Smaller values are indicative of better agreement between the track hypothesis and the
data than larger values. The number is calculated from the absolute value of the SPEFit
log-likelihood function at its minimum but normalized to the total number of DOMs that
registered photon hits.

Cascade rlogl (CascadeLlhVertexFit rlogl)

This variable is similar in interpretation to the one above but assumes a cascade hypoth-
esis and thus measures the quality of the cascade fit. In particular the likelihood function
of the CascadeLLhVertexFit reconstruction algorithm (eq. (2.5)) is used.

Photon Delay Time

The Photon Delay Time calculation is based on the reconstructed vertex position x0

(and time t0) from the Monopod cascade reconstruction algorithm. In this calculation a
rudimentary cascade model is assumed: isotropic, point-like photon emission at time t0
and vertex position x0. Let xDOM

i
be the position of DOM i in the detector array and

tDOM
i be the first hit recorded in DOM i. Assuming photon propagation at the speed

of light in the medium cice one can define the time of direct travel from x0 to xDOM

i
:

tgeoi = d/cice where d = d(x0, xDOM

i
) is the distance between vertex position x0 and

DOM position xDOM

i
. The (minimum) delay time �tmin

ice is then given by

�tmin
ice = min

i2all DOMs

�
tDOM
i � tgeoi

�
(3.1)

Under ideal conditions (e.g. the true vertex is perfectly known, the light emission is instan-
taneous and point-like etc.) one expects �tmin

ice � 0ns, because under these assumptions
photons can not arrive at the DOMs before the geometric time (the local speed of light
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needs to be obeyed). They can, however, arrive later due to scattering during propagation
from source to receiver. There are four processes that can lead to �tmin

ice < 0ns. First,
noise hits obviously are not covered by the considerations above. They are e↵ectively
suppressed by requiring a hard local coincidence (HLC) criterion (c.f. Sec. 2.3) and ad-
ditional pulse cleaning. Second the necessarily imperfect vertex reconstruction (the true
interaction vertex position is unknown) can overestimate d = d(x0, xDOM

i
) even if the

event under consideration is a perfect cascade. The third case is due to muon neutrino
charged-current interactions. They produce a charged muon that is not bound by the
local speed of light in the medium cice and thus can out-run the the light front and lead
to the detection of Cherenkov photons in DOM i at t < tgeoi . Finally the most inter-
esting contribution is case four: atmospheric muon background can create early photon
hits (mostly near the detector boundaries) before being reconstructed somewhere inside
the detector. Thus this variable provides good discrimination against atmospheric muon
tracks.

Veto Track Charge

Atmospheric muons penetrate the detector from the outside with down-going trajectories.
We will show in Sec. 3.2.4 that the most di�cult, i.e. cascade-like, muon background
stems from atmospheric muons with a dim track and large stochastic energy loss within
the detector. A good estimate of the event’s interaction vertex can be obtained from
Monopod. Under the assumption that the event is associated with an atmospheric muon,
its track would have to go through the vertex of the energy deposition. To fully define that
track its direction is needed. If we were to know the true trajectory of the hypothetical
muon, one could check for (rare) photon detections in the DOMs along the track that are
causally connected. Assuming a dim track, the standard track reconstruction algorithms
are unfortunately very likely not to find the correct direction. Following [139], we therefore
search for photon detections that are possibly related to one out of 104 di↵erent down-
going directions. The “Veto Track Charge“ is then defined as the total collected PMT
charge along the track with the largest associated collected charge in comparison to all
other 103 tested trajectories. For neutrinos this charge is expected to be smaller3 than
for muons, since only detector noise contributes. More details about the implementation
can be found in [139].

Starting Track Charge

The “Starting Track Charge“ allows for separation of starting tracks (charged current
muon neutrino interactions) from cascades. The idea is similar to the one of “Veto Track
Charge“. While the latter searches for photons consistent with an incoming, down-going
muon track, the former identifies photons consistent with an outgoing track, testing
all directions. Photon hits along a possible muon trajectory are counted as possibly
associated with the track if are causally consistent with the muon track, but inconsistent
with the light front from the cascade. The distinction is possible because muons in ice

3It is smallest for astrophysical neutrinos since they are not accompanied by muons from atmospheric
airshowers, while atmospheric neutrinos might be (c.f. Sec. 4.2.3 “Atmospheric Self-Veto E↵ect“).

48



Chapter 3. Event Selection

propagate faster than the local speed of light in the medium (also exploited in the Photon
Delay Time variable). More details about the implementation can be found in [139].

Reconstructed Vertex Separation

As discussed in Sec. 2.4 the reconstruction of cascade properties is done in stages. The
reconstruction results obtained with simple algorithms are used as a starting point (seed)
for more complex calculations. For true cascade events on expects the latter to be a re-
finement of the former, but not to be significantly di↵erent. If the event is not a cascade,
but a track mis-reconstructions are expected and stronger discrepancies between the dif-
ferent reconstructions will be observed. Here we introduce the separation distance in the
XY-plane between the vertices as reconstructed by CascadeLlhVertexFit and Monopod
as measure of discrepancy.

All of these variables (except for the last) have been used in previous IceCube analyses
and found to perform well [80][154][139][155].

3.1.2 Level 3: The Cascade Filter Stream

The very first selection criterion defines the starting point of this analysis. We require
all events to pass the designated, collaboration-wide online and o✏ine cascade filters (c.f.
Sec. 2.3). In particular we will only analyze events that are retained in the contained,
single (non-coincident) event branch of the o✏ine cascade-Level3 filter. All other
events are discarded right away. Fig. 3.1 shows the reconstructed (Monopod) energy
distribution for the 10% test-samples of the years 2011 (top left) and 2012 (top right)
in comparison to the corresponding air-shower simulation prediction from CORSIKA.
One immediately notices an excess of data events over the expectation from CORSIKA
that becomes stronger with increasing energy and is most noticeable for reconstructed
energies above 10 TeV. Fig. 3.1 also shows the total collected charge by all PMTs, QHLC

tot

(bottom), which does not show similar behavior. This can be interpreted as a first hint
that the excess events are due to mis-reconstructions, which appear to di↵er between
data and simulation. We intend to suppress these events with the subsequent cleaning
cuts. It is worth pointing out the good shape agreement for the total charge between
data observation and simulation prediction. IceCube has recently re-calibrated the single
photon charge-response function (c.f. Sec. 2.1) individually for all PMTs and is currently
in the process of re-processing all experimental data. These new calibrations are already
taken into account in the data processing and filtering scheme developed for this analysis.
The total passing rates for experimental data (all years + 2011) and CORSIKA prediction
(2012 + 2011) are given in Tab. 3.1 and match within < 15%. At this stage of the event
selection neutrinos are negligible. They contribute about 1 in 500 events. The neutrino
selection e�ciency of all Level-4 pre-cuts will be discussed in Sec. 3.1.7.
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Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 154.5 ± 0.2 155.2 ± 0.2 154.7 ± 0.2 193.9 ± 0.3 146.7 ± 0.2
CORSIKA n/a n/a n/a 183.5 ± 0.3 129.1 ± 0.5

Table 3.1: After Cascade-Level3 (singles, contained branch) selection: Passing rates of
experimental data for data taking periods 2011-2015 in comparison to estimated passing
rates from Monte Carlo simulations (CORSIKA). n/a ⌘ simulation not available.

3.1.3 Level 4A: Treating the Dust Layer

The so-called dust-layer (c.f. Sec. 2.2), a region of ice contaminated with dust particles
that reduce its optical quality, is particularly di�cult to model with regard to atmospheric
background. Due to the reduced absorption length at depths between ⇠ 2000 m and
⇠ 2200 m reconstruction algorithms tend to fail for most events. In particular incoming
muon (bundles) with faint tracks are di�cult to identify since they leave little trace in
that region. Faced with possibly mis-reconstructed vertices we use the DOM with the
maximum charge to identify events that deposit energy in the dust layer. The distribution
of this VetoMaxChargeOM variable is shown in Fig. 3.2 (top left). The DOMs 31-
38 are located in the dust-layer and a clear excess of the experimental data over the

Figure 3.1: After Cascade-Level3 (singles, contained branch) selection: Observed
distributions of reconstructed energy (top) and total PMT charge (bottom) in data
period 2011 (left) and 2012 (right) using 10% of available data statistics. 2011 (left)
and 2012 (right) Monte Carlo simulations: CORSIKA and NuGen.
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Figure 3.2: Relevant Observable Distributions - Top: VetoMaxChargeOM (left) and
Cascade.rlogl (right) after Cascade-Level3 (SC); 2nd row: VetoMaxChargeOM (left)
and Cascade.rlogl (right) after Level-4A selection; Bottom: Reconstructed energy and
total PMT charge after Level-4A selection. data (10%) and MC (CORSIKA and Nu-
Gen) for 2011 configuration.

simulation prediction is observed. We studied this region of observable space in detail
and found that most of the excess is identifiable by the quality parameter of the cascade
reconstruction (cascade.rlogl from CascadeLlhVertexFit), that assigns large values to such
events (smaller values correspond to higher quality, c.f. Sec. 3.1.1). This suggests a
conditional selection. Similarly, we observed much improved data/mc agreement for dust-
layer events with reconstructed (by Monopod) vertices within the dust-layer or larger
energy deposits (as measured in total charge). We define the following criterion:
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Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 150.1 ± 0.2 150.8 ± 0.2 150.3 ± 0.2 188.3 ± 0.3 142.6 ± 0.2
CORSIKA n/a n/a n/a 181.1 ± 0.3 128.3 ± 0.5

Table 3.2: After Level-4A selection: Passing rates of experimental data for data
taking periods 2011-2015 in comparison to estimated passing rates from Monte Carlo
simulations (CORSIKA). n/a ⌘ simulation not available.

Keep event if

VetoMaxChargeOM  30 or VetoMaxChargeOM � 39

or Cascade.rlogl < 7.5

or � 200 m < Monopod.z < �50 m

or log
10

�
QHLC

tot /p.e.
�

> 200.0

(3.2)

otherwise reject it.

While studying the cascade reconstruction quality parameter cascade.rlogl we observed
a subdominant tail towards large values (bad quality), shown in Fig. 3.2 (top right). We
have no interest in such events and remove them entirely.

Keep event if

Cascade.rlogl < 9.1 (3.3)

otherwise reject it.

Both conditions (eqs. (3.2) and (3.3)) have to be satisfied simultaneously for an event
to pass this stage of the pre-selection (logical and), which will subsequently be referred
to as Level-4A filter criteria. Fig. 3.2 (bottom) shows the reconstructed energy (left)
and total charge (right) distributions for all events that are retained by Level-4A. The
spectra appear unchanged in comparison to Level-3 (Fig. 3.1), because of the small overall
contribution from dust-layer events to the entire sample. However the e↵ect of the cuts
is clearly visible in the VetoMaxCharge variable (middle, left): The dust-layer excess is
removed. The Level-4A passing rates are given in Tab. 3.2.

3.1.4 Level 4B: Containment

The cascade-Level 3 filter stream (contained branch) defines containment loosely based
on charge criteria (Sec. 2.3). Event reconstruction and cascade identification performs
better for events with contained vertices than for events with vertices beyond the detector
boundaries. Hence such events su↵er from larger background contamination, in particular
muon bundles with large energy depositions outside but near the detector. Fig. 3.3 (top)
shows the reconstructed vertex z-coordinate (left) as well as XYscale (right). The data
exceeds the simulation prediction near the top (z = 500 m) and bottom (z = �500 m).
Similarly a large increasing excess is observed for events that are reconstructed beyond the
detector boundary in the XY-plane (XYscale > 1.0). We have no interest in such events.
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Figure 3.3: Relevant Observable Distributions - Top: Monopod.Z (left) and Mono-
pod.XYScale (right) after Level-4A selection; 2nd row: Monopod.Z (left) and Mono-
pod.XYScale (right) after Level-4B selection; Bottom: Reconstructed energy and total
PMT charge after Level-4B selection. data (10%) and MC (CORSIKA and NuGen) for
2011 configuration.

There are dedicated analyses dealing with partially contained cascades, e.g. [154][156].
Hence we decided to remove the vast majority of such events from the sample. The filter
criteria read:
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Keep event if

� 500 m < Monopod.z < 500 m and

{Monopod.XYscale < 1.0 or

(Monopod.XYscale < 1.1 and Cscd.rlogl < 7.6)}
(3.4)

otherwise reject it.

The last conditions retains a small contribution from events that appear with high quality
cascade-like light deposition and are reconstructed not too far from the detector bound-
ary. These events contain information about cascade-like background near the detector
boundary and are well described by simulations, after the criteria from eq. (3.4) are
applied. This is shown in Fig. 3.3 (middle, right). The reconstructed energy spectrum
as well as the total charge distribution after applying the containment criteria are shown
in Fig. 3.3 (bottom). The high energy (E > 10 TeV) tail of mis-reconstructed events, we
observed earlier (c.f. Sec. 3.1.2), appears much reduced and the excess is less significant.
The passing rates of the Level-4B pre-selection is given in Tab. 3.3.

Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 134.3 ± 0.2 134.7 ± 0.2 134.2 ± 0.2 168.4 ± 0.2 127.6 ± 0.2
CORSIKA n/a n/a n/a 165.9 ± 0.3 118.7 ± 0.5

Table 3.3: After Level-4B selection: Passing rates of experimental data for data
taking periods 2011-2015 in comparison to estimated passing rates from Monte Carlo
simulations (CORSIKA). n/a ⌘ simulation not available.

3.1.5 Level 4C: Anti-Top/Bottom

While Level-4B improved the data/mc agreement quite a lot, the data still do not appear
to match the simulation prediction at very top (bottom) of the detector, as shown in
Fig. 3.3 (2nd row, left). Since at low energies the muon background rate decreases
as a function of depth, i.e. as a function of the thickness of the ice-shield, the excess
at the top is believed to be due to low energy muon background. In principle such
an excess could also be related to mis-modeling of the local optical properties of the
ice. Unfortunately this cannot be checked, because we have no ability to re-simulated
CORSIKA background events for alternative assumptions about the detector properties.
Since we observe the same top/bottom data excess in the VetoMaxChargeDOM variable,
a reconstruction e↵ect appears unlikely, see Fig. 3.4 (top right). None of these possibilities
are desirable, and thus we will tighten the containment criteria corresponding to a 140 m
(50 m) rejection region at the top (bottom) of the detector. Here we use the reconstructed
vertex position (z-coordinate) by Monopod. If Cascade.rlogl indicates poor reconstruction
quality, then additional cuts based on the VetoMaxChargeOM are applied making this
top/bottom rejection robust against reconstruction failures. The selection criteria are
given in eq. (3.5).
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Figure 3.4: Relevant Observable Distributions - Top: Monopod.Z (left) and VetoMax-
ChargeOM (right) after Level-4B selection; 2nd row: Monopod.Z (left) and VetoMax-
ChargeOM (right) after Level-4C selection; Bottom: Reconstructed energy and total
PMT charge after Level-4C selection. data (10%) and MC (CORSIKA and NuGen) for
2011 configuration.

Keep event if

� 450 m < Monopod.z < 360 m

and (10 < VetoMaxChargeOM < 56 or Cascade.rlogl < 7.5)

and VetoMaxChargeOM < 59 (removes 2 DOM-layers at bottom)

(3.5)

otherwise reject it.
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Figure 3.5: Relevant Observable Distributions - Top: DelayTime (left) and Delay-
Time (+Qtot > 200 p.e.) (right) after Level-4C selection; Bottom: DelayTime (left) and
DelayTime (zoom) (right) after Level-4D selection. data (10%) and MC (CORSIKA
and NuGen) for 2011 configuration.

Fig. 3.4 (2nd row) shows the depth related variables after application of these Level-
4C rejection criteria. The energy spectrum and total charge distribution are shown in
the bottom row. The high energy excess, discussed before, essentially disappeared. The
Level-4C passing rates are given in Tab. 3.4.

Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 113.5 ± 0.2 114.2 ± 0.2 113.6 ± 0.2 142.4 ± 0.3 108.6 ± 0.2
CORSIKA n/a n/a n/a 147.6 ± 0.3 107.9 ± 0.5

Table 3.4: After Level-4C selection: Passing rates of experimental data for data
taking periods 2011-2015 in comparison to estimated passing rates from Monte Carlo
simulations (CORSIKA). n/a ⌘ simulation not available.

3.1.6 Level 4D: Removing Large Delay Times

The last pre-selection filter removes events with very large (negative) photon delay times
(Photon Delay Time, c.f. Sec. 3.1.1), which form a subdominant tail that is not well
described by our simulation. This is shown in Fig. 3.5 (top) for all events (left) and events
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Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 113.5 ± 0.2 112.8 ± 0.2 112.3 ± 0.2 140.8 ± 0.3 107.5 ± 0.2
CORSIKA n/a n/a n/a 146.4 ± 0.3 107.4 ± 0.5

Table 3.5: After Level-4D selection: Passing rates of experimental data for data
taking periods 2011-2015 in comparison to estimated passing rates from Monte Carlo
simulations (CORSIKA). n/a ⌘ simulation not available.

with more than 200 p.e. total charge (right). Large negative delay times are expected
for coincident events, events with more than one atmospheric muon track from several
uncorrelated air showers. Our simulation allows for the prediction of the coincident
background component (pink histogram). While the relative contribution from coincident
background increases towards larger negative delay times, the absolute normalization is
too small to explain the data excess. We investigated some of these data events manually
with the event viewer and found them to be consistent with background. Thus we decided
to remove the tail area from the analysis. The criterion reads:

Keep event if

� 3000 ns < Photon Delay Time < 125 ns or

(�5000 ns < Photon Delay Time  3000 ns

and 0.35 < Monopod.XYscale < 0.8)

(3.6)

otherwise reject event.

We can extent the acceptance region down to �5000 ns by tightening the containment
cut (XY-plane) to maintain data/mc agreement. The distribution of the delay times after
these Level-4D selections is shown in Fig. 3.5 (bottom) and the corresponding passing
rates can be found in Tab. 3.5.

Since this concludes our preselection, it is worth revisiting the impact of the selection
criteria on the reconstructed energy spectrum. Fig. 3.6 compares the reconstructed en-
ergy spectrum without any pre-selection (top) to the one obtained after applying the
filter criteria defined in Level-4 A-D (bottom). The test-data from the year 2011, used
to develop the criteria, is shown in the left column. The criteria generalize well, as
demonstrated by the good data/mc agreement observed for the test-data from the year
2012 (right column). While we did not strongly reduce the overall background rate, the
pre-filter criteria remove the majority of the mis-reconstructed high-energy background
events thereby improving the data/mc agreement to the observed level. Since we sup-
pressed miss-reconstructed events, no strong impact on the total charge distribution is
expected. The corresponding distributions after Level4 A-D are shown in Fig. 3.7 (bot-
tom) and can be compared to the ones at the starting point of the selection, Fig. 3.1
(bottom). The shape of the distributions remains largely unchanged.
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Figure 3.6: Before/After comparison of reconstructed energy distributions - Top:
Reconstructed energy for 2011 (left) and 2012 (right) configuration before any L4 se-
lections; Bottom: Reconstructed energy for 2011 (left) and 2012 (right) configuration
after Level-4D selection.

Rate in Year 2015 [µHz] 2014 [µHz] 2013 [µHz] 2012 [µHz]
⌫e (conv.) c.f. 2013 c.f. 2013 54.51 ± 0.06 55.50 ± 0.06
⌫µ (conv.) c.f. 2013 c.f. 2013 253.5 ± 0.7 259.5 ± 0.8
⌫e (prompt) c.f. 2013 c.f. 2013 0.9176 ± 0.0006 0.9283 ± 0.0006
⌫µ (prompt) c.f. 2013 c.f. 2013 0.2776 ± 0.0007 0.2827 ± 0.0007
⌫e (astro) c.f. 2013 c.f. 2013 5.707 ± 0.004 5.770 ± 0.004
⌫µ (astro) c.f. 2013 c.f. 2013 2.041 ± 0.004 2.087 ± 0.004
⌫⌧ (astro) c.f. 2013 c.f. 2013 4.229 ± 0.006 4.275 ± 0.006

Table 3.6: After Level-4D selection: Estimated neutrino passing rates for data taking
periods 2012-2015 based on NuGen simulation for the 2012 and 2013 configurations.

3.1.7 Level 4: Summary

The Level 4 selection criteria reduce the total data volume (muon background rate) by
⇠ 27%, see Tab. 3.5 (L4D) and Tab. 3.1 (L3). The estimated contribution from neutri-
nos is ⇠ 0.2% and is given in Tab. 3.6 for the di↵erent neutrino flavors and production
mechanisms. Thus far, we have not discussed the influence of the selection criteria on
the neutrino component, because the criteria are mostly either geometric in nature or re-
quire high reconstruction quality, and are not meant to distinguish further between muon
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background and neutrino signal. Fig. 3.7 (top) shows the neutrino selection e�ciency
of the Level 4 criteria, compared to the starting point of this analysis, as a function of
neutrino energy. Independent of neutrino flavor the selection e�ciency is ⇠ 95% for low
energy neutrinos (E⌫ = 1 TeV). At higher energies (E⌫ = 1 PeV) it is slightly lower
(⇠ 85%) because of the containment criteria (L4-B and L4-C). Since some of the criteria
are more constraining for events that appear less cascade-like (low cascade fit quality),
the high energy e�ciency for muon neutrinos is slightly lower than that of electron and
tau neutrinos.
Finally we show that the selection criteria developed using test-data and CORSIKA
simulation for the 2011 detector configuration (left column) generalize well to the 2012
configuration (right column) for all relevant observables, see Figs. 3.7 (bottom), 3.8, 3.9
and 3.10. All of these variables will be used to build the gradient boosted decision tree
model, introduced in the next chapter.
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Figure 3.7: Top: Neutrino selection e�ciencies as function of neutrino energy of all
Level-4 (A-D) criteria with respect to Cascade-Level3 (SC) filter. Bottom: Distribution
of total PMT charge for 2011 (left) and 2012 (right) configurations.
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Figure 3.8: After Level-4D selection: Observable distributions for data periods 2011
(left) and 2012 (right).
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Figure 3.9: After Level-4D selection: Observable distributions for data periods 2011
(left) and 2012 (right).
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Figure 3.10: After Level-4D selection: Observable distributions for data periods 2011
(left) and 2012 (right).
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3.2 Event Identification and Background Rejection:
Machine Learning

In order to achieve our goal of isolating an at least 90% pure sample of neutrinos we need to
suppress the atmospheric muon background by several orders of magnitude, while keeping
the neutrino selection e�ciency as large as possible. At the same time we are interested in
distinguishing between neutrino flavors, especially in the identification and separation of
starting tracks (muon neutrino charged-current interactions) from the cascade-like signal
events. We can do all of the above in one step by means of multi-class classification
methods, rooted in machine learning. In particular we will show that Gradient Boosted
Decision Trees (GBDT) [157] perform well in the context of our problem. We will give
a brief introduction into the method in Sec. 3.2.1. Following [158][159], we define a
statistical (non-parametric) model and will fit it to the data (MC simulations of the
actual physical processes) by means of maximum likelihood optimization. The method
of maximum likelihood is introduced in Sec. 5.3 in the context of fitting astrophysical
neutrino flux models to the final sample. The concept is identical and thus we refer to
Sec. 5.3 for general definitions.
In this section we demonstrate the performance of the GBDT model and define the final
selection criteria based on its predictions. The resulting selection will be combined with
the dedicated high-energy neutrino selection from [153], as discussed in Sec. 3.3.

3.2.1 Introduction: Gradient Boosted Decision Trees

Formulating the Statistical Model

Suppose we collect data a dataset D = {(Yi, Xi) ; 1  i  N} with N events. For each
event i we would like to know the value Yi, but we only measured the values of the
observables Xi. Thus we have to predict the latent variable Yi from the observations Xi.
This requires to specify a statistical model fY |X (Y |X, ✓) of the data generating process
relating Yi and Xi.

Y |X ⇠ fY |X (Y |X, ✓) (3.7)

where ✓ are unknown model parameters. For now consider Yi to be a continuous random
variable. We could assume a normal distribution with variance �2 to define a regression
problem for its mean value µ = µ (x, ✓) = f (x, ✓) as a function of the observed value x
of X with parameters ✓:

Y |X ⇠ N
�
Y | f (X, ✓) , �2

�
(3.8)

If we know the function f (x, ✓) and true parameter values ✓0, prediction of Yi would be
straightforward, e.g. replacing the unobserved value Yi with the expectation Y e

i from the
model: Y e

i = E (Yi |Xi) = f (Xi, ✓0)4.
If we do not know the true parameter values ✓0, but we know the functional form

4We use E(·) to denote the average: E(X) =
R
x · fX (x) dx.
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of f (x, ✓), then we could estimate ✓0 from an independent training-dataset Dtrain =
{(Y 0

i , X
0
i) ; 1  i  N 0}. One would fit the model, eq. (3.8), to the training-set for ex-

ample using the method of maximum likelihood (c.f. Sec. 5.3) and predict Yi as follows:
Y p
i = f(Xi, ✓̂). Here we used ✓̂ to denote the corresponding best-fit value. For the

regression model (3.8), this leads to the so-called chi-squared solution:

✓̂ = argmin
✓

N 0X

i=1

{Y 0
i � f (X0

i, ✓)}
2 (3.9)

The sum is often referred to as squared-error-loss, when normalized by the total number
of samples.

Now consider the binary classification problem, i.e. we are interested in predicting discrete
variables Yi = {0, 1}, where we define Yi = 1 (Yi = 0) as signal (background) event. The
statistical model would assume a Bernoulli probability mass function (Binomial probabil-
ity mass function with n = 1) with success probability p = p (x, ✓) ⌘ f (x, ✓) depending
on the observables X and parameters ✓. The model reads

Y |X ⇠ binom (Y | p = f (X, ✓) , n = 1) (3.10)

The (negative) log-likelihood function (c.f. Sec. 5.3) becomes

� log L = �
N 0X

i=1

�
Y 0
i log f

�
X 0

i
, ✓

�
+ (1 � Y 0

i ) log(1 � f
�
X 0

i
, ✓

�
)
 

(3.11)

and is often referred to as log-loss or cross-entropy, when normalized by the total number
of samples. It is numerically inconvenient to work with p (x, ✓) ⌘ f (x, ✓) since, being a
probability, it is bounded between 0  f (x, ✓)  1. This can be resolved by means of a
logistic transformation

g (x, ✓) = logit (p (x, ✓)) ⌘ log

✓
f (x, ✓)

1 � f (x, ✓)

◆

f (x, ✓) =
1

1 + exp (�g (x, ✓))

(3.12)

Inserting eq. (3.12) in eq. (3.11) yields the following best-fit solution for the parameter
vector ✓

✓̂ = argmin
✓

N 0X

i=1

log {1 + exp (g (x, ✓))} � Y 0
i g (x, ✓) (3.13)

We should point out that this requires a parametric form for the logarithm of the binomial
odds ratio g (x, ✓). The prediction for Yi becomes:

Y p
i = E (Yi|X) = p (X, ✓) (3.14)
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where we need to replace the unknown parameters ✓ by the best-fit values ✓̂.

p̂ (xi) = p
⇣
xi, ✓̂

⌘
=

1

1 + exp
⇣
�g

⇣
xi, ✓̂

⌘⌘ (3.15)

Thus the prediction for the unobserved quantity is the estimated success (signal event)
probability of the binomial model from its best-fit solution.

In this work we are interested in the multi-class classification problem with Nc = 3
classes: atmospheric muon background, neutrino-induced starting tracks and neutrino-
induced cascades. The model follows from the previous one by replacing the binomial
model with a multinomial one:

Y |X ⇠ multinom (Y |p = f (X,✓) , n = 1)

Y = (Y1, ..., YNc) , Yi 2 {0, 1},
X

Yi = n = 1

p = (p1, ..., pNc) ,
X

pi = 1

(3.16)

The (negative) log-likelihood function (c.f. Sec. 5.3) becomes

� log L = �
N 0X

i=1

NcX

k=1

I ((Y0
i)k = 1) ⇥ log fk (X0

i,✓)

I ((Y0
i)k = 1) =

(
1 if (Y0

i)k = 1

0 if (Y0
i)k = 0

(3.17)

and is often referred to as multi-class log-loss, when normalized by the total number of
samples.
For reasons of numerical convenience it will again be helpful to transform f (X,✓) (vector-
valued) onto an unbounded scale. For the binomial problem, a suitable transformation
was the logit-transformation eq. (3.12). Its generalization to the multinomial problem
(vector of probabilities), the softmax transformation [159] reads

pk (x, ✓) =
exp (gk (x, ✓))

PNc

i=1
exp (gi (x, ✓))

(3.18)

Inserting eq. (3.18) in eq. (3.17) yields the following best-fit solution for the parameter
vector ✓ [159]

✓̂ = argmin
✓

N 0X

i=1

�
( 

NcX

k=1

I ((Y0
i)k = 1) ⇥ gk (X0

i,✓)

!
+ log

 
NcX

k=1

exp (gk (X0
i,✓))

!)

(3.19)

After having fit a parametric function g (x,✓), we can, for each observation (Yi, Xi) and
each class, estimate the corresponding membership probability, i.e. Nc probabilities per

66



Chapter 3. Event Selection

observation.

p̂k (xi) = pk
⇣
xi, ✓̂

⌘
=

exp
⇣
gk
⇣
xi, ✓̂

⌘⌘

PNc

i=1
exp

⇣
gi
⇣
xi, ✓̂

⌘⌘ (3.20)

Thus far the discussion has been general. We have not made assumptions about the
character of the function g (x, ✓). However, we required knowledge about its parametric
form, mostly because this allowed to illuminate the problem from the perspective of
parametric statistics and, consequently standard fitting procedures. In most problems
(including ours) no closed form parametric expression for the functions g (x, ✓) exists.
The discussion above still applies, but the problem becomes more involved. We now
have to estimate/approximate the function g (x, ✓) itself. Methods from non-parametric
statistics need to be added. Note, as we have demonstrated above, this task is a common
one - no matter whether regression, binary classification or multi-class classification is
concerned. Hence we will not distinguish between those tasks in the following sections.

Decision Trees

Decision Trees are a conceptually simple yet powerful method of approximating high
dimensional functions. In one dimension they reduce to piecewise constant functions.
Decision Trees, T (x, c, R), are derived from partitioning the support (observable/fea-
ture/variable space) of the function via recursive binary splitting into rectangular regions
Ri. The approximation ĝ (x) of the function g (x) reads

ĝ (x) = T
⇣
x, ĉ, R̂

⌘
=

MX

i=1

ĉi ⇥ I
⇣
x 2 R̂i

⌘

I (x 2 Ri) =

(
1 if x 2 Ri

0 if x /2 Ri

(3.21)

The complexity and thus the flexibility of this tree model obviously increases with the
total number of regions M = 2K . Here we define K as the depth of the tree, i.e. the total
number of recursive splits. We will not discuss di↵erent implementations and use cases
of decision tree models here and refer to standard references [159][160] instead. It turns
out that a model built from a superposition of many rather shallow (few splits) decision
trees is vastly superior to a single, deep (many splits) decision tree model in terms of
performance, i.e. its predictive accuracy, for many problems [159]. This motivated a
procedure called Boosting5.

5Boosting is in principle not tied to decision trees. Here we only discuss it in the context of decision
trees.
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Gradient Boosting

Boosting refers to the idea of approximating a function g (x) by its expansion ĝ (x) into
a set of suitable basis functions B (x, �i).

ĝ (x) =
MX

i=1

↵̂iB (x, �̂i) (3.22)

where the values of the coe�cients ↵i and �i are assumed to have been determined from
a suitable training-dataset. In our case we will use decision trees as a basis - thus the
term Boosted Decision Trees.

ĝ (x) =
MX

i=1

↵̂iT
⇣
x, ĉi, R̂i

⌘
(3.23)

In principle we now have all necessary ingredients to fit the model. One would insert
(3.23) into (3.19), perform the necessary minimization of the log-likelihood to find the
best-fit values ✓̂ = {↵̂, ĉ, R̂}, that uniquely define the approximation ĝ (x) of g (x).
Inserting into (3.20) would yield the desired probability estimates (predictions) p̂k (xi).
In practice direct numerical minimization of eq. (3.19) for model (3.23) is impossible and a
local optimization strategy, called forward stagewise additive modeling [159] is employed.
The minimization is done by iteratively adding decision trees, one-by-one, that maximally
reduce the log-likelihood compared to the result from the previous iteration. At iteration
m � 1 one solves

(↵m, cm, Rm) = argmin
↵, c,R

{� log L (Y0, gm�1 (x) + ↵T (x, c, R))} (3.24)

gm (x) = gm�1 (x) + ↵m T (x, cm, Rm) (3.25)

either via gradient descent or Newton’s method. The latter is implemented in the XGBoost
library [152], which we chose for this work, because of its speed and accuracy6.

To demonstrate the flexibility of Gradient Boosted Decision Trees as non-parametric
function estimates, we fitted a simple regression model, eq. (3.8), to noisy observations
from a true function (taken from [162]), which is constant over some part of its support,
slowly varying and rapidly varying in other parts. The true function is shown in Fig. 3.11
(black) and compared to the best-fit GBDT approximation (yellow), which captures the
behavior of the true function well. Also shown is an early estimate (red) from the boosting
procedure (2% of total boosting iterations). This example illustrates one big advantage of
GBDTs over other non-parametric methods: If the problem requires complexity in some
parts of its observable space, the model does not tend to find such complexity in other
regions where it might not be warranted. In particular, no “ringing“ is observed in the
central range where the true model is indeed constant.

6XGBoost has been awarded the ”HEP meets ML” award for high performance at the Higgs bo-
son machine learning challenge, hosted by the ATLAS experiment [161]. It also received the John M.
Chambers Statistical Software Award of the American Statistical Association (2016).
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Figure 3.11: Example fit result for a non-parametric regression problem obtained
with gradient boosted decision trees using XGBoost [152] (Figure and problem adapted
from [162]).

Parameters that influence the behavior and performance of the fits and are not deter-
mined during the stagewise-optimization, eq. (3.24), are called hyper-parameters. The
Boosting procedure introduces two such parameters: the total number of boosting iter-
ations M (number of trees used to define the basis) and the shrinkage, introduced by
[158]. The former is obvious but the latter needs explanation.
The (locally) optimal update of the model gm�1 (x) at iteration m � 1 is given by (3.25).
[158] found that the stability of the final model always improves (in some cases signifi-
cantly) if the stepsize is reduced by some shrinkage factor ⌘ ⌧ 1.

gm (x) = gm�1 (x) + ⌘ ⇥ ↵m T (x, cm, Rm) (3.26)

However, this requires to increase the total number of boosting iterations M , since the
log-likelihood reduction per step is reduced.
Another parameter corresponds to the individual decision trees. The maximum depth of
the tree T � 2 controls the allowed complexity of each individual basis function. Typical
values are 4  T  8 [159]. Furthermore one might require a minimum number of ob-
servations (or total weight, in case of weighted observations) in each region Rm, thereby
controlling their volume.
In addition XGBoost introduces complexity penalization or regularization for the indi-
vidual trees into the log-likelihood function, eq. (3.17), during the stagewise fit. The
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penalized log-likelihood function � log Lp reads:

� log Lp = � log L + �T ⇤ +
1

2
�||cm||2

2
(3.27)

where T ⇤ is the number of terminal nodes of the tree (T ⇤ = 2T if all branches of the tree
reach maximum depth T ) and ||cm||2

2
is the norm of the vector of constants determined

for each tree region Rm. Large values of � lead to a preference for small trees, while large
values for � penalize regions Rm with large values of cm.

We have thus far omitted mentioning sample weights to maintain clean notation. As
discussed in Sec. 2.5, IceCube simulations rely on importance sampling for computational
e�ciency. Thus all simulated events come with associated sample weights wi. When
fitting the GBDT model to simulated events, these weights are taken into account as
follows:

� log L =
N 0X

i=1

log Li(Yi, f (Xi,✓)) �!
N 0X

i=1

wi log Li(Yi, f (Xi,✓)) (3.28)

3.2.2 Building the Model

In order to fit the GBTD multi-class model, eqs. (3.23) and (3.16), a suitable training
dataset is necessary. During development of this event selection the CORSIKA simulation
dataset corresponding to the 2011 detector configuration provided the largest number
of simulated atmospheric muon background events for a recent detector configuration,
and thus is used to model atmospheric muon background. After application of all pre-
selection (Level 4 A-D, c.f. Sec. 3.1.7) criteria ⇠ 300, 000 simulated muon background
events are retained. To maintain approximate balance between the di↵erent classes, we
add neutrino simulation for starting tracks (⌫µ with CC interactions) and cascades (⌫e
with all interactions), each with similar total number of events, passing Level 4.
We use 13 observables with good agreement between data and simulation (after Level 4)
to discriminate the three di↵erent classes of events. Hence dimX = 13. These variables
are:

• log
10

(Qtot/p.e.)

• Monopod.Z, XYscale and Zenith

• Depth of First Hit

• Cascade.rlogl and Track.rlogl

• LineFit.Zenith and SPEFit.Zenith

• Photon Delay Time

• Veto Track and Starting Track Charges

• Reconstructed Vertex Separation
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Each variable is explained in Sec. 3.1.1 and shown in Figs. 3.8 to 3.10.

Thus far we have omitted discussing the overfitting problem. The method of maximum
likelihood (c.f. Sec. 5.3) itself, while in a certain sense optimal for point estimation,
does not provide a good criterion to distinguish between di↵erent models, as it essen-
tially always prefers more complex models over simple ones. However the latter might
generalize better to new and independent datasets. Here we define “overfitting“ loosely
as non-optimal model choice in favor of an overly complex model, thereby impeding its
performance on independent data after the fit. We would like to avoid that and aim for
maximal performance on independent data.
In order to select a model, which in our context means finding a suitable set of values for
the GBDT hyper-parameters, introduced above, we need to define a metric. However no
metric exists that could blindly be optimized. For example high energy cascade events are
more “valuable“ than low energy ones, since they contain a higher fraction of astrophysical
neutrinos but low energy neutrinos are more numerous and thus provide betters statistics.
Some muon background is acceptable at low energies, but interpreted as detrimental at
high energies. Predictions for data and simulation should agree well. The model should
perform similarly for the di↵erent detector seasons and so forth. Therefore we decided
to first perform the optimization based on a simple, standard criterion, the multi-class
log-loss (eq. (3.17)) (normalized, negative multinomial log-likelihood, “mlogloss“), before
verifying manually using MC simulations and the 10% exp. test dataset that the corre-
sponding model satisfies the desiderata from above.
Since we are interested in measuring predictive performance, we evaluate the multiclass-
logloss criterion, eq. (3.17), on independent validation data (CORSIKA and neutrino
simulation) that is not used during the fitting process, i.e. disjoint from the training
dataset. Since, as discussed, the available CORSIKA simulation is rather scarce, we
rely on n-fold stratified7 cross-validation [159] to separate the available simulation into
training and validation datasets. The dataset is split into n disjoint subsamples. The fit
is performed using n-1 of these subsamples as training dataset and the mlogloss evalu-
ated on the n-th subsample, that has been left out. This procedure is repeated n-times
and allows to use the entire simulation for evaluation purposes while maintaining strict
separation between training and validation datasets. The result, when averaged over all
n validation-folds, is called out-of-sample (oos) mlogloss. For model selection purposes
n = 10 is recommended [163][159]8. Once the best hyper-parameters (model) are selected,
the final fit is performed using the full dataset consisting of all n-folds. Finally, in order to
obtain an unbiased estimate of the behavior of this final best-fit model, i.e. background
rejection, signal e�ciency, passing rates etc., the corresponding properties are studied in
a last step using entirely independent test-datasets - simulations that have been generated
later and never used during optimization. In other words, the final statistical data anal-
ysis presented in Chapter 6 only uses simulations that were hidden (unavailable) during
parameter optimization and fitting of the GBDT model.

7Stratified means that we require the relative contribution from each class (and the various types of
CORSIKA simulations with di↵erent injection spectra) to each fold to be identical to the entire sample.
This ensures that, for the purpose of measuring mlogloss, the n-folds behave identically up to statistical
fluctuations.

8For reasons of numerical e�ciency, we performed most calculations for n = 2 and used n = 10 only
for a couple of points with highest performance.
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Figure 3.12: Optimization of GBDT parameters: Dependence of log-loss criterion on
maximum depth of each tree (top). Two examples for log-loss estimation via 10-fold
cross-validation for final GBDT parameters, see text (bottom)

Since strong shrinkage (small learning rate ⌘, c.f. eq. (3.26)) has been found to always
improve stability [158], we chose a conservatively small value ⌘ = 5 · 10�3 without further
optimization. As shown in Fig. 3.12 (top), depending on the maximum depth of the in-
dividual trees (varied between T = 2 and T = 10, c.f. eq. (3.27)) we observe convergence
of the out-of-sample mlogloss between M = 1000 and M = 2000 boosting iterations,
where the mlogloss criterion attains its minimum value.. No strong dependence on the
tree depth is observed and values between 4 � 6 appear to work well, except for T = 10,
which performs worse, indicating overfitting. After some further tests, we observe the
best performance for the final model with T = 8 and extra regularization (black line). To
confirm that this is not an artifact from one particular choice of cross-validation splits,
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we have repeated the tenfold cross-validation several times (random splits) and obtained
essentially indistinguishable results. Two examples are shown in Fig. 3.12 (bottom left
and bottom right). However, since the observed di↵erences in oos-mlogloss are small, we
could have probably also chosen any of the two well performing un-regularized models
with T 2 {4, 6} for further study. The values for the hyper-parameters corresponding to
the final model are given in Tab. 3.7.
The solution is found using XGBoost [152] and yields a parametrization of the class
membership probabilities pk (X) (eq. (3.18)) for each class k in the problem. For
each event with observables X we can now evaluate these probabilities (c.f. eq. eq.
(3.16)): p (cascade |X) (cascade score), p (starting track |X) (starting track score) and
p (atm. muon |X) (atm. muon score).

Parameter Symbol Value
shrinkage ⌘ 5 · 10�3

# of boosting iterations M 2000
max. depth of individual trees T 8
regularization of # of terminal nodes � 5
regularization of leaf values � 1 (default)
min. sum of weights per node wtot 100

Table 3.7: Optimized values for GBDT parameters used in this work.

3.2.3 Level 5A: Extra Cleaning

Using the GBDT model, constructed in Sec. 3.2.2, eq. (3.16), we are now in a posi-
tion to study background events that appear reasonably cascade-like, i.e. the near-signal
region. Of special interest to us are background events that contribute to the tail of mis-
reconstructed high energy events Erec > 10 TeV and remain after the Level 4 pre-selection
(c.f. Fig. 3.6, bottom). Fig. 3.13 (top left) shows that, according to our CORSIKA
simulation, almost all these events deposit very little light (Qtot < 100 p.e.) and thus
appear very dim inside the detector. Clearly, the reconstruction completely failed for
such events. While their contribution to the total number of low-charge (Qtot < 100 p.e.)
events is negligible (< 0.1%), they pose a problem. The total rate of such low-energy
background events is su�ciently large, that even this tiny fraction of mis-reconstructed
events would dominate the expected signal of high-energy E > 10 TeV astrophysical neu-
trinos. How does the GBDT model respond to such events? Fig. 3.13 (2nd row, left)
shows the subsample of all simulated events (CORSIKA) that are classified loosely as
somewhat cascade-like with p (cascade |X) > 0.1. Most of these events appear easily
identifiable as atmospheric muon background and the total background contribution is
strongly reduced. However several (⇠ 5) simulated CORSIKA events survive in the crit-
ical region of low-charge deposits and (mis-reconstructed) high energy. We studied the
events in detail. While very dim, they do not show signs of track-like light emission and
thus the GBDT probability assignment appears reasonable. However all of these events
are located approximately at the same depth (�135m < Monopod.z < �85 m), where the
dust-layer (cf. Sec. 2.2) shows peak dust concentrations and hence exceptionally large
absorption. Thus such events are easily removable. However due to their small number,
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Figure 3.13: Population of low-charge miss-reconstructed events: Two dimensional
distributions of reconstructed energy and total charge. CORSIKA simulation (left) and
data (right). all events after Level-4D (top). events after Level-4D with cascade.score
> 0.1 (2nd row). events after Level-5A with cascade.score > 0.1 (bottom). see text
for details.

it is di�cult to devise a robust cut. We will show later, that such low charge, low (true)
energy events pose another challenge in general: due to their large rate in combination
with strong background rejection, enormous amounts of background simulations would
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be needed to accurately characterize the corresponding residual contribution that would
remain once we require p (cascade |X) to be large. Since the contribution from astro-
physical neutrinos (signal) to such dim events is negligible compared to all atmospheric
backgrounds, we decided to remove all events with low charge Qtot < 100 p.e.. Finally,
to further stabilize the energy reconstruction, we require at least 4 strings9 to be active,
i.e. to have registered PMT hits in hard local coincidence (c.f. Sec. 2.3), for events with
reconstructed energies above 3 TeV. The selection criteria read

9The Cascade-L3 filter, starting point of this analysis, requires at least 3 strings to be active.

Figure 3.14: Before/After comparison of reconstructed energy distributions - Top:
Reconstructed energy for 2011 (left) and 2012 (right) configuration after Level-4D se-
lections; Bottom: Reconstructed energy for 2011 (left) and 2012 (right) configuration
after Level-5A selection.

Rate in Year 2015 [mHz] 2014 [mHz] 2013 [mHz] 2012 [mHz] 2011 [mHz]
Data (10%) 23.18 ± 0.09 23.25 ± 0.09 23.33 ± 0.09 26.3 ± 0.1 21.02 ± 0.09
CORSIKA n/a n/a n/a 26.9 ± 0.1 20.1 ± 0.2

Table 3.8: After Level-5A selection: Passing rates of experimental data for data
taking periods 2011-2015 in comparison to estimated passing rates from Monte Carlo
simulations (CORSIKA). n/a ⌘ simulation not available.
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Figure 3.15: Top: Neutrino selection e�ciencies of all Level-4 + Level-5A criteria
with respect to Cascade-Level3 (SC) filter

Keep event if

Qtot > 100 p.e.

and (Monopod.z < �135 m or Monopod.z > �85 m)

and (NString � 4 or Monopod.energy < 3 TeV)

(3.29)

otherwise reject it.

Fig. 3.14 compares the energy spectra obtained after application of this Level 5A cleaning
filter (bottom) to the one after application of all Level 4 selections (top) for the two test-
datasets (left: 2011, right: 2012). The reduction of mis-reconstructed muon background
at high energies is very noticeable. The Level 5A passing rates are given in Tab. 3.8.
Compared to Level 4 the total data volume is reduced by ⇠ 80%, with the reduction
being dominated by the Qtot > 100 p.e. requirement. As shown in Fig. 3.15 the neutrino
selection e�ciency compared to Cascade Level-3 for neutrinos with energies above a few
TeV is essentially similar to that of our Level 4 selection ⇠ 80%. However the Qtot >
100 p.e. cut depletes the sample of very low energy neutrinos and thus the e�ciencies are
low: < 30% for E⌫ < 1 TeV, as expected. The expected neutrino passing rates are given
in Tab. 3.9 and remain a factor of ⇠ 250 smaller than the atmospheric muon background
expectation.
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Rate in Year 2015 [µHz] 2014 [µHz] 2013 [µHz] 2012 [µHz]
⌫e (conv.) c.f. 2013 c.f. 2013 16.47 ± 0.03 16.47 ± 0.03
⌫µ (conv.) c.f. 2013 c.f. 2013 85.4 ± 0.4 85.5 ± 0.4
⌫e (prompt) c.f. 2013 c.f. 2013 0.5388 ± 0.0005 0.5390 ± 0.0005
⌫µ (prompt) c.f. 2013 c.f. 2013 0.1587 ± 0.0005 0.1592 ± 0.0005
⌫e (astro) c.f. 2013 c.f. 2013 3.526 ± 0.003 3.528 ± 0.003
⌫µ (astro) c.f. 2013 c.f. 2013 1.274 ± 0.003 1.286 ± 0.003
⌫⌧ (astro) c.f. 2013 c.f. 2013 2.579 ± 0.004 2.580 ± 0.004

Table 3.9: After Level-5A selection: Estimated neutrino passing rates for data taking
periods 2012-2015 based on NuGen simulation for 2013 configuration

3.2.4 Response to Atmospheric Muon Background

In order to devise a final event selection based on the GBDT classification of each event
(multinomial class probabilities), we need an accurate prediction of the background con-
tamination as a function of the classification score towards high scores, for example
p (cascade |X) ! 1. First, it is necessary to demonstrate that the GBDT classifica-
tion does not dependent on the details of the detector configuration throughout the years
of interest (2012-2015). Fig. 3.16 shows the distributions of the di↵erent classification
scores (p (cascade |X) (top), p (starting track |X) (bottom left) and p (track |X) (bot-
tom right)) observed in 100% of the experimental data for the di↵erent years (colors)
- after all pre-cuts (Level 3 + L4 A-D + L5A). The distributions match very well, ex-
cept for very background like events (e.g. p (cascade |X) ! 0) where the di↵erences
in the cascade-filter (Level-3) are visible. Such events are of no interest to this anal-
ysis and will be removed later. We will now study the cascade-like muon background
(p (cascade |X) > 0.1) in more detail, using the available CORSIKA simulations. Fig.
3.17 compares the background prediction from CORSIKA simulation to the experimental
data (left: 2013-2015 experimental data and 2011 CORSIKA10, right: 2012 experimen-
tal data and 2012 CORSIKA). Clearly, the available CORSIKA statistics is insu�cient
to properly characterize the distribution of the muon background and we observe large
statistical fluctuations in the background simulation, dominated by individual events
with very high importance weights (small CORSIKA livetime). However we can use the
available simulation to establish common properties of simulated background events that
appear reasonably cascade-like (p (cascade |X) > 0.1). Of particular interest is the frac-
tion of muon background events that arrive at the detector (i.e. after passing through
the ice shield) as single muons for two reasons. First, the modeling of muon bundles is
associated with larger systematic uncertainties than that of single muons and, second,
single muon background can more e�ciently be generated by means of simulation since
it does not require simulation of the full air-shower development (c.f. Sec. 2.5). Fig.
3.18 shows the single muon fraction as estimated from CORSIKA simulation as function
of log

10
(p (cascade |X)) for the two datasets, discussed so far (2011 (top left) and 2012

(top right)). However robust estimation of the single muon fraction remains di�cult,
especially at larger reconstructed energies, because of limited CORSIKA simulation. For
example we only find 8 (22) events in the 2012 (2011) CORSIKA dataset that satisfy

10Since 2011 CORSIKA was also used for creation of the GBDT model, we used 20-fold CV to estimate
this distribution
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Figure 3.16: Distribution of GBDT scores observed in experimental data (100%) for
each year (2012-2015). Top: cascade score, Bottom left: starting track score, Bottom
right: track score

Erec > 5 TeV and p (cascade |X) > 0.1. Therefore we analyzed yet another CORSIKA
dataset (2010) from an older, partial detector configuration (79 strings instead of 86
strings), corresponding to the largest CORSIKA Monte Carlo Simulation production in
IceCube. For comparison: in the 2010 CORSIKA dataset we find 58 muon background
events with the criteria mentioned above. The corresponding single muon fraction is
shown in Fig. 3.18 (center). Some di↵erences between the di↵erent CORSIKA datasets
(2010/11/12) are visible and are due to di↵erences in the raw (unweighted) cosmic-ray
injection spectra and composition. However they all demonstrate that the single muon
fraction increases with p (cascade |X) and thus muon bundles are e�ciently rejected. In
particular we find Nsingle µ/Ntot ' 90% for p (cascade |X) > 0.1. This justifies to esti-
mate the behavior of the atmospheric muon background in this region using fast single
muon simulation (“MuonGun“ [139], c.f. Sec. 2.5). For comparison, the currently avail-
able MuonGun simulation contributes ⇠ 1400 events to the region with Erec > 5 TeV
and p (cascade |X) > 0.1. Fig. 3.18 (bottom) demonstrates an interesting behavior of
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Figure 3.17: Comparison of cascade.score distributions observed in data to expecta-
tion from simulation. Left: data (100%), simulation (CORSIKA + NuGen) for season
2012. Right: data (100%) for seasons 2013-15 , NuGen simulation for season 2013 and
CORSIKA simulation for season 2011. Notice the large MC statistical uncertainties on
the prediction from CORSIKA (orange) at high cascade.scores.

single muons as function of p (cascade |X): the fraction of the largest, single radiative
muon energy loss (e.g. bremsstrahlung and pair-production, c.f. Sec. 1.8) in the detector
compared to the total muon energy at detector entry increases with the cascade.score11

. This is exactly what one would expect from our GBDT model. Single energy deposi-
tions appear point-like in the detector and thus are indistinguishable from the signature
of neutrino-induced cascades. Hence, in order to be recognizable as muon track, the
muon needs to deposit su�ciently large visible energy over some extended range in the
detector. However if the muon deposits most of its energy in a single cascade-like energy
loss, then it might not have su�cient energy left to be detectable. Fig. 3.18 (bottom)
shows that 50% (80%) of the Erec > 5 TeV muons that contribute at the highest cascade
probabilities deposit more than 96% (93%) of their remaining energy at detector entry
in a single cascade-like radiative energy loss. In conclusion the main muon background
that contributes at high cascade scores is a tail of highly stochastic single muons.

Using - from now on - single muon simulation dramatically increases the available sim-
ulation statistics. Fig. 3.19 compares the distributions of the di↵erent classification
scores (cascade score (top), starting track score (botton left) and muon track score (bot-
tom right)) obtained from single muon (and neutrino) simulation to the full experimen-
tal dataset (2012-2015). Data and simulation agree very well, except for cascade and
starting track scores ! 0 (track.score ! 1), where muon bundles (not simulated) con-
tribute significantly, as discussed above. The simulation predicts a smooth decrease of
single muon background towards large signal scores (neutrino induced cascades and start-
ing tracks). Similarly, at large starting track scores the neutrino simulation predicts an
essentially pure contribution from ⌫µ charged-current interactions, while at large cascade

11This is the energy that the muon has left after having passed through the ice-shield - not the muon
energy at the surface of the Earth.
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Figure 3.18: Fraction of muon background events that arrive at the detector as single
muons as function of cascade.score for di↵erent CORSIKA datasets: CORSIKA 2011
(top left), CORSIKA 2012 (top right), CORSIKA (center). Bottom: Fraction of largest
radiative energy loss in the detector relative to total muon energy at detector entry as
function of cascade.score - estimated from MuonGun simulation.80
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Figure 3.19: GBDT Score Distributions: data (100%) for 2012-2015 and simulation
(MuonGun + NuGen) for 2013: cascade score (top), starting track score (bottom left)
and track score (bottom right).

scores neutrino induced cascades dominate (⌫e CC interactions + NC interactions from
all flavors).

Since probabilities must sum to unity, the three classification scores are correlated and the
classification can be visualized in two dimensions. Fig. 3.20 shows the joint distribution of
all three classification scores as ternary projection for the full experimental dataset (2012-
2015). The three corners in the triangle represent regions of high purity of each class:
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Figure 3.20: Ternary projections of GBDT classification for experimental data

atmospheric muon tracks (bottom left), cascades (top) and starting tracks (bottom right).
The number of events in each triangular bin compare well to the simulation prediction,
which is shown in Fig. 3.21 (top left) and includes single muon background as well as
neutrino simulation. Thus, the correlations between the classification scores are modeled
correctly by our simulations. The decomposition of the simulation prediction into the
di↵erent signatures/contributions are also given: cascades, i.e. ⌫e+⌫⌧+⌫µ-NC (2nd row,
right), starting tracks, i.e. ⌫µ-CC (bottom left) and single muons (bottom right) and
clearly illustrates that the GBDT model successfully discrimination between the di↵erent
event classes. We will use all three scores to define the final selection, consisting of a
cascade signal sample (c.f. Sec. 3.2.6), a ⌫µ-CC control sample (c.f. Sec. 3.2.7) and a
single muon control sample (c.f. Sec. 3.2.8).

3.2.5 Level 5: GBDT Selection Criteria

When designing selection criteria, several points have to be considered: purity, sample
size and systematics. In a discovery experiment, one might optimize the selection based
on the expected significance given some assumed value for the unknown strength of the
signal. In a measurement like ours, where the discovery itself is not of primary interest
anymore, since the existence of the signal has already been established, one might instead
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Figure 3.21: Ternary projections of GBDT classification for simulation: sum of MC
(top left), sim. cascade-like events (top right), sim. starting track events (bottom left)
and sim. single muon events (bottom right)

choose the cuts such that they minimize the expected uncertainty in the measurement
of the model parameters. In the context of this work this would mean to minimize the
expected uncertainties for the parameters of the astrophysical neutrino flux. Since we
anticipated systematic uncertainties, for example the detector response to light signals,
(c.f. Sec. 4) to be non-negligible, especially at low energies, these uncertainties would
need to be taken into account during such optimization. However during development of
the selection criteria insu�cient neutrino Monte Carlo simulations corresponding to alter-
native detector properties (e.g. variations in optical properties of the ice) were available,
thus rendering “blind“ optimization of the selection, based on a single metric, impossible.
Previous IceCube masurements [164][155] showed that neutrino flux measurements work
well if the atmospheric muon contribution is suppressed to the ⇠ 10% level. Thus requir-
ing < 10% muon background became a first desideratum. We then aimed to maximize the
cascade acceptance of the selection, subject to the aforementioned constraint. Finally, we
need to separate starting tracks (dominated by conventional atmospheric muon neutrino
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Figure 3.22: Observed distribution of total PMT charge: 2012-2015 data (100%) and
simulation (MuonGun + NuGen). Di↵erent cascade.score thresholds in steps of 0.1:
from > 0.1 (top left) to > 0.8 (bottom right)
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background) from cascades to control for uncertainties in the conventional atmospheric
neutrino flux. Since starting tracks have significantly larger atmospheric neutrino back-
ground than cascades, mis-classification of cascades as starting tracks is considered worse
than mis-classification of starting tracks as cascades. Being unable to study the robust-
ness of the starting track classification against systematic uncertainties, we decided to
choose a conservative cut, corresponding to high starting track purity in the ⌫µ-CC con-
trol sample. As shown in Fig. 3.19 (bottom left) a su�ciently large and pure sample of
starting tracks can be isolated by requiring a large value for the starting track score. We
studied many simulated ⌫µ-CC events (and eventsin the 10% exp. test data) from that
region in the event viewer. The starting muon produced in ⌫µ-CC interaction appeared
well identified for events with hybrid.score > 0.75. Hence the first selection criterion
becomes

Add event to Starting Track Sample if

starting.track.score � 0.75 (3.30)

otherwise reject it from Starting Track Sample.

This cut corresponds to a straight line at starting.track.score > 75% parallel to the left
edge of the ternary projection (Fig. 3.20) thus isolating the bottom right corner. The
properties of this sample are discussed in more detail in Sec. 3.2.7.

Since the measurement of the astrophysical neutrino flux will rely mostly on information
from the cascade signal sample, we studied the behavior of the cascade.score variable in
more detail. In particular, we want to make sure that the agreement between data and
simulation does not depend strongly on the exact value of the cascade.score cut. That
this is the case is demonstrated in Fig. 3.22 using the total charge QHLC

tot as a measure
of the brightness of each event. The data (black) compares very well to the simulation
prediction for the various components: single muons (yellow) and neutrinos (other colors)
independent of the cascade.score requirement, which is varied in steps of � = 0.1 from
cascade.score > 0.1 (top left, single muon dominated) to cascade.score > 0.8 (bottom
right, cascade dominated). The figure nicely shows how the single muon background is
reduced as a function of the cascade.score. In addition the signal to background ratio
improves with total charge for higher cascade.scores, suggesting a dependence on the en-
ergy of the events.
Fig. 3.23 shows the cascade.score distribution for di↵erent values or reconstructed energy
threshold: > 1 TeV (top left), > 5 TeV, > 10 TeV and > 25 TeV (bottom right). The
background rejection clearly improves with higher reconstructed energies, as expected.
First, high-energy muons are more easily identified than low-energy ones12 and second, the
muon flux decreases rapidly as function of muon energy. We have shown in Sec. 3.2.4 that
the fractional contribution from muon bundles at low cascades.scores cascade.score ⇡ 0
increases with energy. This explains why the data excess at cascade.score ⇡ 0 over the
single muon prediction from “MuonGun“ increases with energy.
The improved separation between atmospheric muons and neutrino induced cascades at
higher energies motivates a two-dimensional cascade.score requirement. A tight cut at
low energies suppresses the majority of the muon background, while at higher energies, a

12In order to avoid detection, the muon has to essentially loose all of its energy in a single energy loss.
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Figure 3.23: Observed cascade.score distributions for di↵erent energy thresholds:
Erec > 1TeV (top left), Erec > 5TeV (top right), Erec > 10TeV (bottom left) and
Erec > 25TeV (bottom right).

looser cut can boost signal e�ciency without sacrificing background rejection. Fig. 3.24
shows the two-dimensional joint distribution of the cascade.score and reconstructed en-
ergy for the entire data sample (2012-2015) (top left), the sum of all neutrino simulations
(top right), all available single muon simulation (2nd row, left) and CORSIKA simulation
for the years 2010 (2nd row, right), 2011 (bottom left) and 2012 (bottom right).
At low energies Erec < 5 TeV a cascade.score > 0.75 is required to keep the atmospheric
muon background below the 10% level. At highest energies not one simulated muon back-
ground event, neither from single muon simulation nor from CORSIKA full air-shower
simulation is rated by the GBDT with cascade.score > 0.1. To smoothly connect these
two extreme values we chose to parametrize the energy dependence of the cascade.score
cut value as an inverted sigmoid function, defined by the following selection criterion
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Figure 3.24: Two-dimensional distributions of cascade score and reconstructed energy.
data (top left), NuGen (top right), MuonGun (center left), Corsika 2010 (center right),
Corsika 2011 (bottom left) and Corsika 2012 (bottom right).

Add event to Cascade Signal Sample if

cascade.score > f (⇠) , ⇠ ⌘ log
10

Erec/GeV

f (⇠) = 1 �
⇢

1

A + exp (�B ⇤ (⇠ � C))
+ D

�

A = 1.539, B = 5.0, C = 4.1, D = 0.25

and starting.track.score < 0.75

(3.31)
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Figure 3.25: Track score (left) and Cascade score (right) distributions after applica-
tion of cuts eq. (3.30) and (3.31), see text.

otherwise check track.score condition, eq. (3.31).

where the last requirement keeps the cascade sample disjoint from the starting track
sample. The cut boundary defined by eq. (3.31), is shown in Fig. 3.24 as red, dotted
line and the signal region is denoted by the green area. In the ternary projection, Fig.
3.20 this cut runs parallel to the lower edge of the triangle and isolates the top corner
(cascades) as a function of energy.

The selection criteria defined so far, eq. (3.30) and (3.31), retain events that are well-
identified either as cascades or starting tracks. However the GBDT model provides more
information and thus allows to further enhance the neutrino selection e�ciency, while
maintaining < 10% muon contamination. Fig. 3.25 (top left) shows the distribution
of the track.score variable, after all events that satisfy either eq. (3.30) or (3.31) have
been removed. The distribution remains well described by our simulations and neutrinos
dominate at low track.score < 0.15. These are events that the GBDT model clearly
identifies as neutrinos but does not allow to distinguish further between the neutrino
signatures, for example because the starting muon is too low in energy to be detected.
Thus we add them to the cascade sample:

Add event to Cascade Signal Sample if

track.score < 0.15

and starting.track.score < 0.75
(3.32)

otherwise reject it from Cascade Signal Sample.

where the last requirement keeps the cascade sample disjoint from the starting track
sample. The Cascade sample thus consist of events that satisfy either eq. (3.31) or eq.
(3.32).
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Finally, using events that are rejected from both neutrino samples (cascades and starting
tracks) we would like to define a single muon sample to control the corresponding back-
ground in our final analysis. Fig. 3.25 (top right) shows the cascade.score distribution
for such events. Good agreement between data and MC simulation is observed, and thus
we move all remaining events with cascade.score > 0.1 into the muon control sample.

Add event to Single Muon Sample if

event fails eq. (3.30)

and event fails eq. (3.31)

and event fails eq. (3.32)

but event satisfies: cascade.score > 0.1

(3.33)

otherwise reject event from Single Muon Sample.

Thus, events that do not satisfy at least one of the equations, (3.30) to (3.33), are com-
pletely discarded. These events have cascade.score < 0.1 and starting.track.score < 0.75.
The former condition is shown in Fig. 3.24 as red, solid line with corresponding rejection
region marked as red area. The region between the red solid and red dotted lines defines
the single muon control sample and is marked yellow.

3.2.6 Level 5B: The Cascade Signal Sample

The cascade signal sample is defined by eqs. (3.31) and (3.32). We have claimed earlier in
this work, that di↵erences in filter configurations, visible at early stages of this selection,
e.g. Sec. 3.2.3, vanish in the signal region. Fig. 3.26 (top) shows the energy spectra
(left: true neutrino energy, right: reconstructed energy) for the 2012 (dashed lines) and
2013 (solid lines) filter configurations predicted from electron (blue), muon (red) and tau
(green) neutrino simulations after the cascade selection criteria are applied. Essentially no
di↵erence is observed for electron and tau neutrinos contributing to the cascade sample,
while muon neutrinos agree within < 2% dominated by statistical uncertainties in the
simulations13. Fig. 3.26 (bottom) demonstrates that the agreement is independent of
arrival direction (zenith angle) using electron neutrino simulation as example (left: true
variables, right: reconstructed observables). Tab. 3.10 gives the passing rates for the
experimental data (2012-2015) and Monte Carlo simulation (2013). In total this sample
retains ⇠ 4700 data events. To better illuminate the properties of these cascade-like
events we present relevant observable distributions in Fig. 3.27: total charge (top left),
reconstructed energy (top right), cascade.rlogl (2nd row, left), reconstructed zenith angle
(2nd row, right), reconstructed vertex z-position (bottom left) and reconstructed vertex
XYscale (bottom right). These can be compared to their counterparts after the pre-
GBDT cuts (Figs. 3.8 and 3.9 (top)). The GBDT suppresses the data rate strongest in the
vicinity of the geometric boundaries defined by the pre-selection criteria (c.f. Sec. 3.1.3
- 3.1.5). Similarly the reduction is strongest in the region of low cascade reconstruction
quality (high values of Cascade.rlogl). While our simulation predictions agree well with
the observed data in all observables, two observations stand out. First, the simulations

13For the final analysis we have since doubled the available muon neutrino simulation.
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significantly over-predict the number of events that are reconstructed as vertically up-
going. While still under study, we would just like to point that this direction would
maximize the intersection of photon trajectories with the hole-ice column of the nearest
string. We will show in Sec. 4.1.2 that the optical properties within the (re-frozen)
ice in IceCubes drill holes have large systematic uncertainties and directly impact the
directional reconstruction of cascades. Since the relative contribution of events with such
reconstructed directions to the entire sample is small, this is not expected to negatively
impact this analysis. We will refer to Sec. 6 and Appendix A.2 for further analysis
and discussions. Second, the agreement between data and simulation prediction near
the upper boundary of the selection (Monopod.z > 200 m) appears worse than it is
throughout the remaining part of the detector. This does not appear to be caused by
the GBDT selection, since we have observed a similar trend after all pre-cuts before
application of the GBDT, as shown in Fig. 3.8 (2nd row) - albeit less significantly,
because the vertex resolution degrades for very background like events. A more plausible
explanations might be insu�ciencies in the modeling of the optical properties of the bulk
ice in the regions of the secondary dust layers (c.f. Sec. 2.2). The level of imperfection
is su�ciently small to be disregarded for the purpose of this work. It will therefore be
su�cient to only consider the impact of global (systematic) variations of bulk ice optical

Figure 3.26: Comparison between energy (and zenith) distributions predicted from
NuGen MC for the years 2012 and 2013. True neutrino energy (top left), reconstructed
energy (top right), 2D true neutrino energy and true zenith (bottom left) and 2D
reconstructed energy and zenith (bottom right). Essentially no di↵erences are observed.
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properties (c.f. Sec. 5.7) during the final analysis. Current computational limitations
concerning simulation production render it impossible to properly quantify the influence
of local variations of the bulk ice on this analysis.
Since we are interested in measuring the astrophysical neutrino-energy spectrum, we
demonstrate in Fig. 3.28 that our simulations accurately model the correlation between
total charge collected by all PMTs (Qtot). Fig. 3.28 compares the distribution of the
total charge for di↵erent thresholds in reconstructed energy: Erec > 1 TeV (top left),
Erec > 5 TeV (top right), Erec > 10 TeV (bottom left) and Erec > 30 TeV (bottom right).
Finally, the selection e�ciency with respect to the cascade-L3 filter for the di↵erent
neutrino flavors as function of neutrino energy is given in Fig. 3.28 (bottom). The
selection e�ciency peaks at around E⌫ ⇠ 100 TeV, where it approaches ⇠ 75% for electron
and tau neutrinos (slightly larger for the former). While similar e�ciency is obtained for
muon neutrinos with neutral-current interactions (cascade-like), the e�ciency for muon
neutrinos with charged-current interactions (starting tracks) is suppressed to ⇠ 25%, as
desired.

3.2.7 Level 5C: The Starting Track Control Sample

The starting track control sample is defined by eq. (3.30) and contains ⇠ 1600 events
that are vastly dominated by charged-current muon neutrino interactions (purity of ⇠
95%). This is shown in Tab. 3.11 which summarizes the observed (data) and predicted
(simulation) passing rates for this sample. Fig. 3.29 shows the relevant observable
distributions: reconstructed energy (top left), total charge (top right), starting track
charge (2nd row, left), reconstructed zenith angle (2nd row, right), reconstructed vertex
z-position (bottom left) and reconstructed vertex XYscale (bottom right). As expected for
starting tracks, we find a larger (relative) contribution from events with large Starting
Track Charge (photons from out-going muon) than observed before application of the
GBDT classification (Fig. 3.10, 2nd row). The selection e�ciencies with respect to
the cascade-L3 filter for the di↵erent neutrino flavors (and interaction types for ⌫µ) are
compared in Fig. 3.30 (top). The e�ciency for cascade-like events (⌫e, ⌫⌧ , ⌫µ-NC)
is essentially ⇠ 0%, meaning that we do not mis-identify cascades as starting tracks,

Rate in Year 2015 [µHz] 2014 [µHz] 2013 [µHz] 2012 [µHz]
data 39.7 ± 1.1 38.4 ± 1.1 40.3 ± 1.2 38.6 ± 1.2
⌫e (conv.) c.f. 2013 c.f. 2013 7.16 ± 0.02 7.12 ± 0.02
⌫µ (conv.) c.f. 2013 c.f. 2013 25.2 ± 0.2 24.8 ± 0.2
⌫e (prompt) c.f. 2013 c.f. 2013 0.3109 ± 0.0004 0.3102 ± 0.0004
⌫µ (prompt) c.f. 2013 c.f. 2013 0.0560 ± 0.0003 0.0556 ± 0.0003
⌫e (astro) c.f. 2013 c.f. 2013 2.027 ± 0.002 2.023 ± 0.002
⌫µ (astro) c.f. 2013 c.f. 2013 0.419 ± 0.002 0.417 ± 0.002
⌫⌧ (astro) c.f. 2013 c.f. 2013 1.403 ± 0.003 1.400 ± 0.003P

⌫µ (NC) c.f. 2013 c.f. 2013 13.8 ± 0.2 13.6 ± 0.2P
⌫µ (CC) c.f. 2013 c.f. 2013 11.9 ± 0.2 11.7 ± 0.2

atm. µ c.f. 2013 c.f. 2013 3.0 ± 0.4 2.9 ± 0.4

Table 3.10: Passing rates of Level-5B selection criteria: data and simulation
(MuonGun, NuGen)
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Figure 3.27: Observable distributions for L5B selection (cascade signal sample): total
PMT charge (top left), reconstructed energy (top right), cascade.rlogl (2nd row, left),
reconstructed zenith angle (2nd row, right), reconstructed z-position (bottom left),
reconstructed XYscale (bottom right).

as desired. Starting Tracks are best retained (and identified) if they stem from muon
neutrinos with (true) energy of ⇠ 30 TeV. The peak e�ciency for ⌫µ-CC events is ⇠ 30%.

Finally, Fig. 3.31 shows the distribution of the neutrino event type discriminator (starting
track score) for the combined neutrino sample (cascade sample and starting track sample).
It remains well described by the neutrino simulations at all energies, after muon events
have been rejected: all energies (top), Erec > 1 TeV (2nd row, left), Erec > 5 TeV (2nd
row, right), Erec > 10 TeV (bottom, left) and Erec > 25 TeV (bottom right).
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Figure 3.28: Distribution of total PMT charge for di↵erent energy thresholds. Ereco >
1TeV (top left), Ereco > 5TeV (top right), Ereco > 10TeV (center left) and Ereco >
30TeV (center right). Neutrino selection e�ciency of L5B cuts w.r.t Cascade-L3 filter
(SC) (bottom).
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Rate in Year 2015 [µHz] 2014 [µHz] 2013 [µHz] 2012 [µHz]
data 13.0 ± 0.6 13.7 ± 0.7 13.4 ± 0.7 12.4 ± 0.7
⌫e (conv.) c.f. 2013 c.f. 2013 0.071 ± 0.002 0.074 ± 0.002
⌫µ (conv.) c.f. 2013 c.f. 2013 11.6 ± 0.2 11.8 ± 0.2
⌫e (prompt) c.f. 2013 c.f. 2013 0.00219 ± 0.00003 0.00230 ± 0.00003
⌫µ (prompt) c.f. 2013 c.f. 2013 0.0285 ± 0.0002 0.0288 ± 0.0002
⌫e (astro) c.f. 2013 c.f. 2013 0.0129 ± 0.0002 0.0134 ± 0.0002
⌫µ (astro) c.f. 2013 c.f. 2013 0.163 ± 0.001 0.165 ± 0.001
⌫⌧ (astro) c.f. 2013 c.f. 2013 0.0389 ± 0.0006 0.0394 ± 0.0006P

⌫µ (NC) c.f. 2013 c.f. 2013 0.14 ± 0.02 0.15 ± 0.02P
⌫µ (CC) c.f. 2013 c.f. 2013 11.7 ± 0.2 11.8 ± 0.2

atm. µ c.f. 2013 c.f. 2013 0.8 ± 0.2 0.4 ± 0.1

Table 3.11: Passing rates of Level-5C selection criteria: data and simulation
(MuonGun, NuGen)

3.2.8 Level 5D: The Single Muon Control Sample

In order to constrain the remaining atmospheric muon contribution to the neutrino sam-
ples (Sec. 3.2.6 and Sec. 3.2.7) it is necessary to retain a control sample of atmospheric
muons with almost cascade-like characteristics, i.e. muons that appear like cascade signal
events. The criterion is defined by eq. (3.33) and is satisfied by ⇠ 10800 events. We
estimate that ⇠ 70% of the events retained in this control sample are muon background,
of which ⇠ 90% enter the detector as single muons. The reconstructed energy spectrum
of such events is shown in Fig. 3.32 (top). Some discrepancies are observed at lowest
energies and are interpreted to be due to the muon energy threshold of 500 GeV that is
used for the single muon simulation (c.f. Sec. 2.5). Otherwise simulation and data agree
reasonably well. Fig. 3.32 also shows the distribution of the total charge (2nd row, left).
We observe an excess of events for Qtot > 1000 p.e., indicative of residual contamination
from muon bundles. Since the relative contribution of such events to this control sam-
ple is negligible, this can be ignored. In general the agreement between the data and
simulations, and thus the quality of our modeling, appears not quite as good as that of
the neutrino samples (c.f. Sec. 3.2.6 and 3.2.7). This is partially because of the di�cul-
ties involved in generating su�cient muon background simulation, that can lead to large
Monte-Carlo statistical uncertainties in parts of the parameter space, the residual muon
bundle contamination and finally, possibly more important, due to systematic uncertain-
ties in the modeling of the detector. Since atmospheric muons are strongly suppressed in
our neutrino samples, small imperfections in the modeling of muon background will not
be resolvable.
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Figure 3.29: Observable distributions for L5C selection (starting track control sam-
ple): reconstructed energy (top left), total PMT charge (top right), starting track charge
(2nd row, left), reconstructed zenith angle (2nd row, right), reconstructed z-position
(bottom left), reconstructed XYscale (bottom right).
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Figure 3.30: Neutrino selection e�ciency for L5C selection (starting track control
sample) w.r.t Cascade-L3 filter (SC).
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Figure 3.31: Distribution of starting track classification score for combined neutrino
sample (L5B and L5C). All energies (top), Erec > 1TeV (2nd row, left), Erec > 5TeV
(2nd row, right), Erec > 10TeV (bottom left) and Erec > 25TeV (bottom right)97
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Figure 3.32: Observable distributions for L5D selection (single muon control sample):
reconstructed energy (top), total PMT charge (2nd row, left), Cascade.rlogl (2nd row,
right), reconstructed z-position (bottom left), reconstructed XYscale (bottom right).
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3.2.9 Comparison with Previous IceCube Analyses

Since the original discovery of the high energy astrophysical neutrino flux using events
above reconstructed energies of ⇠ 60 TeV [5], two IceCube analyses have studied the
spectrum with a lower energy threshold: Cascades [155] above Erec = 10 TeV and Medium
Energy Starting Events (MESE) [164] above ⇠ 1 TeV. The event selection, developed
in this work, achieves a neutrino purity comparable to the two previous analyses, but
increases the detection e�ciency for neutrinos with cascade-like signature, especially with
energies below 100 TeV. This can be quantified using the e↵ective area for electron
neutrinos. This is shown in Fig. 3.33 for all three selections: this work (black), Cascades
(10/11) [155] (green) and MESE (red) [164]. Compared to [164], this work increased the
electron neutrino e↵ective area by a factor of ⇠ 3.5 (> 10) for neutrino energies of 10 TeV
(1 TeV). At much higher energies of ⇠ 1 PeV all selections behave essentially identically.
At even higher energies (several PeV) this selection performs worse, most notably at the
glashow resonance.

Figure 3.33: Comparison of electron neutrino e↵ective areas obtained in this work
(black), the previous cascade analysis [155] (green) and Medium Energy Starting Events
[164] (red)

3.3 Final Data Sample: Combining with the High
Energy Selection

It turns out that the cascade detection e�ciency at highest energies can be improved,
especially at the top of the detector where this analysis is limited by the pre-cuts (c.f.
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Secs. 3.1.3 - 3.2.3). A dedicated event selection, targeting high energy (> 30 TeV)
cascades with straight cuts, has been developed by Yiqian Xu at Stony Brook University
[153]. As shown in Fig. 3.34 the dedicated high-energy (HE) cascade selection similar
cascade signal e�ciency (solid blue line) to the GBDT selection (dashed blue line) starting
at reconstructed energies of ⇠ 60 TeV and provides increased e�ciency at higher energies.
At such energies the Cascade-HE selection has been found to be free from atmospheric
muon background [153]. At energies of 1 PeV (10 PeV) the cascade selection e�ciency
is increased from 60% (40%) to 80% (80%). The suppression of charged-current muon
neutrinos (red) is similar to the one obtained in this work. Because of the large overlap
(> 90%), expected from simulations, we combined both selections as follows. Events with
reconstructed energies below 60 TeV are subjected to the selection criteria discussed in the
previous sections. Events above 60 TeV instead must satisfy the criteria defined in [153].
Hence the final starting track and atmospheric muon control samples only contain events
with reconstructed energies below 60 TeV. The cascade signal sample, instead covers the
entire energy range. As with all other selection criteria, this decision was made before
the final sample was revealed (90% of total livetime). The combined selection e�ciencies
for the di↵erent neutrino flavors (and interaction types for ⌫µ) as function of neutrino
energy are shown in Fig. 3.35 (top) and can be compared to the ones obtained in this
work (Fig. 3.28 (bottom)). The combined cascade sample now achieves IceCube’s largest
e↵ective area for electron neutrinos at all energies. This is shown in Fig. 3.35 (bottom).
Compared to previous works we increased the electron neutrino e↵ective area by at least
25%. At lowest energies the increase is larger than a factor of 10. A comparison between
the e↵ective areas for the di↵erent neutrino flavors is given in Fig. 3.36 (top left). Fig.

Figure 3.34: A comparison of the neutrino selection e�ciencies obtained in this work
(dashed) to the one obtained with a dedicated high energy cascade selection [153]. The
latter retains cascade more e�ciently starting at neutrino energies of ⇠ 100TeV.
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3.36 also shows the declination dependence of the e↵ective area for the di↵erent neutrino
flavors: ⌫e (top right), ⌫µ (bottom left) and ⌫⌧ (bottom right). E↵ective areas for up-
going neutrinos are suppressed significantly at high energies > 100 TeV due to neutrino
absorption in the earth. Tau neutrinos are less e↵ected thanks to tau regeneration in the
earth: ⌫⌧ -interactions (CC+NC) produce tau neutrinos in the final states, either directly
(NC) or after the decay of the tau-lepton (CC).
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Figure 3.35: Combined Cascade Sample (LE + HE selections): neutrino selection
e�ciency (top) and electron neutrino e↵ective area (bottom): our work (black, previous
cascade analysis (green) [155] and MESE (red) [164]. The combined analysis provides
largest electron neutrino e↵ective area at all energies.
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Figure 3.36: Combined Cascade Selections (LE+HE): neutrino e↵ective areas for all
three neutrino flavors (top left). zenith dependence of electron neutrino e↵ective areas
(top right). zenith dependence of muon neutrino e↵ective areas (bottom left). zenith
dependence of tau neutrino e↵ective areas (bottom right).
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Chapter 4

Systematic Uncertainties

Systematic uncertainties can mainly be classified into those arising from the detector
itself, e.g. its response to the Cherenkov light emitted by charged particles traversing it,
and those arising from imperfect knowledge of the incident particle flux, i.e. atmospheric
muons and neutrinos.

4.1 Modeling the Detector Response

4.1.1 Relative Photon Detection E�ciency

The relative photon detection e�ciency of IceCube’s optical modules, called ”DOM ef-
ficiency” hereafter, can be understood as the in-situ fraction of photons incident on a
detector optical module that are converted into photo electrons, i.e. actually being de-
tected. Several di↵erent uncertainties contribute: the absolute photon detection e�ciency
of the PMT, a combination of its quantum and photon collection e�ciencies, has been
calibrated in the laboratory with relative uncertainty of 7.7% [124]. Additional uncer-
tainties include the light attenuation in the glass pressure housing and the gel used for
optical coupling of PMT to the glass, as well as local e↵ects in the ice surrounding the
DOM (shadowing of photons by the cable, e↵ects from the refrozen ice itself). In-situ
calibration of the photon detection e�ciency using minimum ionizing muons result in a
total relative uncertainty of 10% [165][137].

The DOM e�ciency has two main impacts on this analysis. The first is a threshold e↵ect:
events that produce the equivalent of less than 100 p.e. in the detector are discarded.
Thus the expected number of events above the charge threshold directly scales with the
dom e�ciency. Secondly, it a↵ects the reconstructed energies of every event in the data
sample. If the true dom e�ciency was larger (smaller) than the nominal assumption,
the reconstructed energies for every event would appear shifted (biased) towards smaller
(larger) energies. We determined these e↵ects from simulations assuming a detector with
varying dom e�ciencies at discrete points ✏ 2 {0.81, 0.90, 0.95, 0.99, 1.08}. The resulting
energy spectra are shown in Fig. 4.1 for true neutrino energies (left) and reconstructed

104



Chapter 4. Systematic Uncertainties

Figure 4.1: True (left) and reconstructed (right) energy spectra of electron neutri-
nos (top) and muon neutrinos (bottom) assuming di↵erent true values of the photon
detection e�ciency of IceCube’s optical modules.

energies (right) separately for electron neutrinos (top) and muon neutrinos (bottom).
For neutrinos with energies above ⇠ 20 TeV the threshold e↵ect becomes negligible. The
impact on reconstructed energies manifests itself mostly as a normalization e↵ect, since
the energy spectrum is steeply falling. The strong threshold behavior visible in the
true energy spectrum is ”smeared out” due to the strong decrease in energy resolution
towards lower energies around and below 1 TeV and thus is much less noticeable in the
reconstructed energy spectra. There appear to be only minor e↵ects on the true and
observed zenith distributions, see Fig. 4.2.

4.1.2 Optical Properties of Glacial Ice at the South Pole

A major contribution to the overall uncertainty in the detector response stems from the
imperfect knowledge of the optical properties of the glacial ice that IceCube is embedded
in. Variations in the scattering and absorption behavior of the ice can strongly a↵ect the
photon transport from the point of emission to the optical modules of the detector. Un-
fortunately it is computationally prohibitive to study the uncertainty from all the O(100)
parameters of the ice-model [125] developed for IceCube. The dimensionality of the prob-
lem can be reduced by simplification. Here we investigated the impact of simultaneous
changes in scattering and absorption coe�cients at all depths relevant for IceCube. The
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Figure 4.2: Ratio between alternative and nominal 2D distributions (energy and
zenith) for true (left) and reconstructed (right) quantities for di↵erent assumed alter-
native DOM e�ciencies ✏ using electron neutrino simulation. Top: ✏ = 0.90/✏ = 0.99.
Bottom: ✏ = 1.08/✏ = 0.99

uncertainty on global changes of scattering an absorption coe�cients has been estimated
to be 10% [125].
We simulated three scenarios: an enhancement in scattering across the entire detector by
10%, an enhancement in absorption across the detector by 10% and finally a simultaneous,
global reduction in scattering and absorption of 7%. The resulting true (left) and recon-
structed (right) energy distributions can be found for electron (top) and muon neutrinos
(middle) in Fig. 4.3. Also shown is the e↵ect on the reconstructed zenith distribution
(bottom). The phenomenology of systematics related to the ice-properties appears richer
than that of the DOM e�ciency. We observe non-trivial e↵ects on the energy and zenith
distributions. The e↵ect of changing the absorption in the ice is similar to that of reduc-
ing the DOM e�ciency. Since in this scenario photons are more likely to get absorbed the
same event will produce less charge in the IceCube sensors, leading to threshold e↵ects
below neutrino energies of E = 20 TeV and an under-estimated energy reconstruction.
Enhancing the scattering of photons in the ice instead pre-dominantly e↵ects the recon-
structed zenith distribution. Compared to the standard scattering coe�cients events are
more likely to be reconstructed as down-going (i.e. reconstructed to originate from the
Southern hemisphere), while the number of events that are reconstructed as up-going (i.e.
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Figure 4.3: Global changes in scattering and absorption of photons in the detector by
10%. True (left) and reconstructed (right) energy distributions for electron (top) and
muon neutrinos (middle). Zenith distributions (bottom) for electron (left) and muon
(right) neutrinos. Also shown is the impact of changes in Hole-Ice parametrization
(green).

reconstructed to originate from the Northern hemisphere) is reduced by up to 20%. In
addition threshold e↵ects cause a reduction in total number of events of ⇠ 10% below
neutrino energies of 10 TeV.
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Figure 4.4: Global changes in absorption (top) and scattering (center) of photons in
the detector by 10%. Ratios between alternative simulation and nominal simulation.
True (left) and reconstructed (right) 2D energy and zenith distributions. Bottom:
Di↵erent angular DOM acceptance corresponding to 30 cm scattering length.

4.1.3 Optical Properties of Hole Ice

The term ”Hole Ice” refers to the refrozen ice in the drill holes that were melted to
lower IceCube’s instrumentation into the ice. Those holes have a diameter of roughly
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Figure 4.5: Relative Photon E�ciency of the IceCube DOM as function of the incident
angle of the photon w.r.t to the PMT for di↵erent hole-ice scattering lengths: 30 cm
(red), 50 cm (blue), 100 cm (green) and no hole-ice scattering (lab measurement) in
black.

60 cm. Camera observations suggest the existence of column of air-bubbles confined to a
cylinder of ⇠ 8cm diameter that were formed during the process of refreezing [166]. These
bubbles strongly increase the scattering of light in the vicinity of the IceCube DOMs, thus
e↵ectively altering the angular acceptance of DOMs in-situ compared to the bare DOM.
The photon e�ciency for head-on illumination is reduced while the e�ciency for other
direction is enhanced compared to the angular e�ciency calibrated in the laboratory.
Nominal IceCube simulations assume an in-situ angular acceptance corresponding to a
Hole Ice column of 50 cm scattering length that was measured with IceCube’s predecessor
experiment AMANDA. Alternative simulations assume scattering lengths of 30 cm and
100 cm. Fig. 4.5 shows the corresponding relative angular e�ciencies (solid) of the
IceCube DOM compared to the one calibrated in the lab (dashed). The e↵ect of changing
the angular acceptance from 50 cm to 30 cm on the final sample observable distributions
is shown in Fig. 4.3 (green). The true and reconstructed energy distributions are mostly
insensitive to this change except for the lowest energies below a few TeV. The e↵ect on
the zenith distribution is similar to an enhancement in bulk ice scattering: the number
of reconstructed down-going events is increased by ⇠ 20% compared to the nominal
simulation. The e↵ect remains visible at highest energies above 100 TeV.

4.2 Modeling the Background from Atmospheric Neu-
trinos

4.2.1 Conventional Atmospheric Neutrinos

Impact of Hadronic Interaction Models
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Figure 4.6: Ratio between predicted conventional muon neutrino (top) and muon
antineutrino (bottom) fluxes for di↵erent hadronic interaction models. EPOS-LHC /
SIBYLL-2.3c (left), QGSJETII-04 / SIBYLL-2.3c (right)

The impact of uncertainties in the modeling of hadronic interactions during cosmic ray
air-shower development on atmospheric neutrino flux predictions has been studied in
[167]. Depending on energy di↵erences among the di↵erent hadronic interaction models
lead to di↵erences in the atmospheric neutrino flux of order 20%�30%. Since then those
interaction models have been refined to take into account experimental data obtained
with the Large Hadron Collider leading to better agreement in the context of air-shower
modeling [168]. To estimate the corresponding uncertainties on the conventional atmo-
spheric neutrino flux from the decays of pions and kaons we use MCEq [169] and calculate
the neutrino flux for fixed primary cosmic-ray flux and atmosphere model but for di↵erent
hadronic interaction models that include LHC data.

• Primary Cosmic Ray Flux Model: Gaisser-Hillas 2012, ”H3a” [170]

• Atmospheric Density Model: Corsika Atmosphere 17 (U.S. Std. Atmosphere)
[171][172]

• Hadronic Interaction Models:
SIBYLL 2.3c[173], QGSJETII-04[174],
EPOS-LHC[175], DPMJETIII-17.1[176][177]

110



Chapter 4. Systematic Uncertainties

Figure 4.7: Ratio between predicted conventional electron neutrino (top) and electron
antineutrino (bottom) fluxes for di↵erent hadronic interaction models. EPOS-LHC /
SIBYLL-2.3c (left), QGSJETII-04 / SIBYLL-2.3c (right)

The left (right) plots in Figs. 4.6 and 4.7 show the ratios between the fluxes predicted
by EPOS-LHC (QGSJETII-04) and the SIBYLL 2.3c prediction for atmospheric muon
and electron (anti-)neutrinos, respectively. The di↵erent modals impact the energy de-
pendence of the flux more than it’s zenith dependence.

We studied the e↵ect on the observable distributions in the final data sample of this anal-
ysis using Monte Carlo simulations of neutrino propagation, neutrino interaction, taking
into account the di↵erent interaction cross-sections for neutrinos and anti-neutrinos, and
detector response to the emitted Cherenkov light. The di↵erence in the atmospheric flux
due to di↵erent hadronic interaction modeling is accounted for by adjusting the weights
of each individual MC event accordingly. Fig. 4.8 shows the reconstructed energy (top)
and zenith (middle, bottom) distributions for the muon neutrinos, ⌫µ + ⌫̄µ (left) and
electron neutrinos, ⌫e + ⌫̄e (right) for the di↵erent hadronic interaction models mentioned
above (colors). Also shown, for reference, is the baseline flux used in IceCube, modified
HKKMS06[99] (black). All distributions have been corrected for the atmospheric self-veto
e↵ect (cf. Sec. 4.2.3).
For muon neutrinos we find variations of ⇠ 10% for energies up to 1 TeV and ⇠ 20% for
higher energies up to several tens of TeV. At highest energies above 100 TeV uncertainties
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become larger than 30% but at these energies the conventional atmospheric flux is sub-
dominant compared to neutrinos of astrophysical origin und thus uncertainties become
irrelevant for the purpose of this dissertation. The uncertainties in the electron neutrino
prediction due to the di↵erent interaction models appear larger than for muon neutrinos.
Finally it is worth observing that the di↵erences in the muon neutrino expectation be-
tween all four MCEq calculations and IceCube’s baseline model are independent of the
zenith angle and only functions of energy. For electron neutrinos instead we observe an
increasing di↵erence towards vertical trajectories. This di↵erence, however, will hardly be
observable, since the electron neutrino contribution to atmospheric neutrinos is smaller
than that from muon neutrinos and other detector related systematic uncertainties (e.g.
scattering in bulk and hole ice) e↵ect the directional reconstruction of both components.

Impact of Primary Cosmic Ray Flux

At neutrino energies relevant for this work the largest contribution to the uncertainties in
the calculation of conventional atmospheric neutrino fluxes are hadronic interaction mod-
els [167]. Uncertainties related to the primary cosmic ray flux, however, are non-negligible.
Here we simplify the problem and only study the impact of global changes in the assumed
spectral index of the primary cosmic rays (shape uncertainties). Uncertainties related to
the normalization of the flux will be taken into account in the analysis by leaving it as a
free parameter in the fit. The e↵ect of varying the spectral index of the primary cosmic-
rays on the observed neutrino spectrum is shown in Fig. 4.9 (�0.05  ��CR  +0.05).
Across the relevant energy range, the relative change in the predicted neutrino spectrum
is ±20% (at ⇠ 100 TeV compared to ⇠ 1 TeV).

4.2.2 Prompt Atmospheric Neutrinos

A selection of recent predictions of the prompt neutrino flux is shown in Fig. 1.11. At
energies relevant for this work the predicted fluxes agree rather well, especially in shape.
Uncertainties, for example related to the heavy quarks production cross sections, mostly
a↵ect the overall normalization, which we will account for by leaving it as a free parameter
in the fit. Uncertainties related to the primary cosmic-ray flux are similar to the ones
observed for conventional atmospheric neutrinos (c.f. Fig. 4.9). More detailed discussions
of relevant uncertainties in the flux calculation can be found in [106][178][105][104].

4.2.3 The Atmospheric Self-Veto E↵ect

While the flux of atmospheric neutrinos at Earth’s surface is approximately symmetric
around the horizon in IceCube’s local coordinate system, the expected background contri-
bution from atmospheric neutrinos to the final data sample is not. Neutrinos produced in
cosmic ray air-showers in the northern terrestrial hemisphere arrive at the detector unac-
companied by atmospheric muons from the same air-showers, because these muons cannot
penetrate through the Earth. Neutrinos that originate from the southern hemisphere with
su�ciently large energies instead have a non-zero probability of being accompanied by a
detectable muon. Event selection criteria designed to isolate pure neutrinos by rejecting
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Figure 4.8: Reconstructed energy (top) and zenith (middle, bottom) distributions for
⌫µ + ⌫̄µ (left) and ⌫e + ⌫̄e (right) assuming di↵erent hadronic interaction models.

muon-like events, as those presented in this dissertation, thus suppress the atmospheric
neutrino background from the southern sky in comparison to the atmospheric neutrino
contribution from the northern sky - even if these criteria themselves are not explicitly
dependent on the arrival direction of the event. It follows that astrophysical neutrinos can
be measured in the southern hemisphere with a better signal-to-background ratio than
in the northern hemisphere, assuming the astrophysical neutrino flux to be isotropic.
This “atmospheric self-veto“ e↵ect was first studied in [180] for the case of both par-
ticles (muon and neutrino) stemming from the same parent meson by looking at the
kinematics of the two-body decays of pions and kaons into muon and muon-neutrinos:
⇡± /K± ! µ±+⌫µ (⌫̄µ). Neutrino and muon can arrive at the detector su�ciently aligned
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Figure 4.9: Reconstructed energy (left) and true neutrino energy (right) distributions
for ⌫µ + ⌫̄µ (left) and ⌫e + ⌫̄e (right) assuming di↵erent values for the spectral index of
the primary cosmic-rays

such that they can be considered companions with typical distances between neutrino and
muon (after 10 km of propagation) of less than 0.1 m (1 m) for neutrino energies of 10 TeV
if the parent meson was a pion (kaon). The probability of obtaining a muon that is able
to penetrate through the ice shield into the detector and thus the probability of vetoing
the neutrino increases with the neutrino energy but decreases with zenith angle since the
ice thickness appears largest for near-horizontal trajectories (see Fig. 4.10 (bottom)).
For neutrino energies greater than 10 TeV and zenith angles below 60� (cos ✓ > 0.5) veto
e�ciencies of ⇠ 99% were obtained [180].
In addition it is possible that the neutrino arrives at the detector accompanied by a muon
that stems from the same air-shower but a di↵erent decay. The calculation of [180] has
been extended to account for this in [179]. It only slightly increased the veto probability
for atmospheric muon neutrinos. However uncorrelated muons from di↵erent meson de-
cays provide the only mechanism that suppresses atmospheric electron neutrinos in the
southern hemisphere because electron neutrinos are predominantly produced together
with electrons. Hence the calculation of [179] can also be applied to atmospheric electron
neutrinos.

The parametrization of the veto probabilities obtained in [179] is used within the IceCube
Collaboration to predict the contribution from atmospheric neutrino background from the
southern hemisphere [5][155][164][181][182] for any given flux of atmospheric neutrinos
at the surface. It has been modified following [139] to take into account the depth
dependence of the ice overburden (see fig. 4.10 (bottom)). In this model there is only
one free parameter Edet

µ,min, i.e. the minimum energy of a muon at depth that would be
identified and removed from the data sample by the event selection. Fig. 4.10 shows
for fixed veto threshold Edet

µ,min = 100 GeV the predicted veto probabilities as function of
neutrino energy and zenith angle for electron neutrinos (left) and muon neutrinos (right),
originating from ⇡/K decays (top) and heavier mesons involving charm quarks (middle).
As discussed above, the veto probability increases with the neutrino energy but decreases
with zenith angle and muon neutrinos are more e�ciently vetoed than electron neutrinos.

Verifying the Model
The validity of the self-veto parametrization, specifically the choice of Edet

µ,min = 100 GeV,
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Figure 4.10: Veto probabilities for atmospheric neutrinos from the southern hemi-
sphere due to accompanying atmospheric muons according to [179][139] for Edet

µ,min =
100GeV: conventional ⌫e (top left), conventional ⌫µ (top right), prompt ⌫e (middle
left), prompt ⌫µ (middle right). Thickness of the ice-shield on top the detector as
function of zenith angle (bottom).
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can be verified using Monte-Carlo simulations. For this purpose we use full air-shower
simulation including neutrino production using CORSIKA [151] and subsequent simula-
tion of particle (neutrino and muon) propagation to the detector, particle interactions as
well as the detector response to the corresponding light signals 1. The simulated events
were then filtered by applying all selection criteria starting from the standard IceCube
filters to the additional selection criteria developed for this dissertation. This procedure
results in the most realistic estimate of the self-veto induced suppression of atmospheric
neutrinos as it directly mimics real experimental data.
We will now compare the prediction from the parametrization to the result of the full
simulation. For this purpose the parametrized veto probabilities (Fig. 4.10) have to be
applied to standard neutrino-only simulations. In order to study the self-veto e↵ect in iso-
lation from other systematic uncertainties, the neutrino-only simulations need to describe
the same physics assumptions as those used for the full CORSIKA [151] simulations. More
specifically, the assumed primary cosmic-ray flux parametrization of the atmosphere and
the description of hadronic interactions within the air-shower need to be identical. The
baseline model for the flux of atmospheric neutrinos used in IceCube (HKKMS06 [99])
does not satisfy this requirement. We therefore rely again on MCEq [169] to solve nu-
merically the system of coupled di↵erential equations (”Cascade equations”) that govern
particle production, interactions, transport and decay in earth’s atmosphere to predict
the resulting neutrino flux at earth’s surface. The model choices that resemble the afore-
mentioned assumptions in the full CORSIKA simulation are given below.

• Primary Cosmic Ray Flux Model: Gaisser-Hillas 2012, ”H3a” [170]

• Atmospheric Density Model: Corsika Atmosphere 26 (South Pole atmosphere for
July 01, 1997 (MSIS-90-E)) [171]

• Hadronic Interaction Model: SIBYLL 2.3 [173]

The resulting atmospheric neutrino flux �k
j (E⌫ , ✓⌫), is then used to calculate flux weights

for each event from the neutrino-only simulation and corrected for the self-veto rejection
e�ciency ⇠kj (E⌫ , ✓⌫) (Fig. 4.10) where k indexes the production channel (pion/Kaon or
charm):

wij (E⌫,i, ✓⌫,i) = w⇡/K
ij (E⌫,i, ✓⌫,i) ⇥ ⇠⇡/Kj (E⌫,i, ✓⌫,i) (4.1)

+ wcharm

ij (E⌫,i, ✓⌫,i) ⇥ ⇠charmj (E⌫,i, ✓⌫,i)

with i, j indexing the i-th simulated neutrino of type j 2 {⌫e, ⌫µ, ⌫̄e, ⌫̄µ} with wk
j =

�k
j (E⌫ , ✓⌫) ⇥ wgen

j (E⌫ , ✓⌫) where wgen

j (E⌫ , ✓⌫) are importance weights unrelated to the
neutrino flux.

Fig. 4.11 shows the predicted atmospheric (conventional + prompt) neutrino energy
spectra after application of all selection criteria obtained from full CORSIKA simula-
tions (red) and neutrino-only simulations with self-veto e�ciency corrections correspond-
ing to di↵erent choices of Edet

µ,min (blue: 100 GeV, black: 400 GeV, green: 700 GeV) for

1the simulations were performed by K. Jero and N. Wandkowsky, IceCube, University of Wisconsin-
Madison
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Figure 4.11: Atmospheric neutrino expectation from full CORSIKA simulation (red)
and neutrino-only simulation with self-veto e�ciency correction for di↵erent values of
Edet

µ,min (blue, green, black). Reconstructed energy spectrum (left) and true neutrino
energy spectrum (right). Nearly horizontal events (top), entire southern hemisphere
(middle) and more vertical events (bottom).

cos ✓ > 0.02 since the CORSIKA simulation remains valid only up to ✓ = 89�. Also
shown is the expected astrophysical neutrino contribution (cyan) for an assumed spec-
trum with normalization �astro = 1.6 and spectral index � = 2.5. The di↵erent rows
in Fig. 4.11 correspond to di↵erent declination bands (top row: 0.02 < cos ✓⌫ < 0.20,
middle row: 0.02 < cos ✓⌫ , bottom row: 0.20 < cos ✓⌫). The top row shows events with
nearly horizontal trajectories. Due to the drastic increase of the ice-overburden and thus
shielding from muons towards the horizon (c.f. Fig. 4.10 (bottom)), no self-veto e↵ect
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Figure 4.12: Zenith distributions of atmospheric neutrinos predicted from CORSIKA
(red) and self-veto corrected neutrino simulations for di↵erent values of Edet

µ,min (blue,
green, black). reconstructed zenith (left), true neutrino zenith (right). 5TeV < Ereco <
10TeV (top) and 10TeV < Ereco (bottom)

Figure 4.13: Atmospheric neutrino expectation from full CORSIKA simulation (red)
and neutrino-only simulation with self-veto e�ciency correction for di↵erent values of
Edet

µ,min (blue, green, black). Reconstructed energy spectrum (left) and true neutrino
energy spectrum (right). Nearly vertical directions.

is observed. We find good agreement between neutrino-only simulation (with weights
determined by MCEq) and full CORSIKA simulation for most of the energy range. At
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Figure 4.14: Atmospheric neutrino expectation from full CORSIKA simulation (red)
and neutrino-only simulation with self-veto e�ciency correction (blue). muon neutri-
nos (top), electron neutrinos (middle). 0.02 < cos ✓⌫ < 0.20 (left), 0.20 < cos ✓⌫ < 1.00
(right). Bottom: near vertical trajectories for muon neutrinos (left) and electron neu-
trinos (right)

neutrino energies above ⇠ 30 TeV the comparison is limited by the total number of simu-
lated air-showers in CORSIKA. At lowest neutrino energies (below a few TeV) systematic
discrepancies become visible but are considered irrelevant for the purpose of validating the
atmospheric self-veto modeling. The bottom row corresponds to events that have large
probabilities of being accompanied by muons and thus are subject to significant vetoing.
Reasonable agreement between the CORSIKA and neutrino-only spectra are observed
for Edet

µ,min = 100 GeV, especially in the important transition region near Ereco = 10 TeV
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where the composition changes from being dominated by atmospheric neutrinos to be-
ing dominated by extra-terrestrial neutrinos. Increasing the veto threshold Edet

µ,min above
100 GeV significantly over-estimates the CORSIKA prediction (green, black).
The predicted zenith distributions are shown in Fig. 4.12 for two energy ranges 5 TeV <
Ereco < 10 TeV (top) and 10 TeV < Ereco (bottom). In the spectral fits presented in
this dissertation not all zenith angle information is used, since only three observable bins
contribute: the energy spectrum in the northern sky (cos ✓rec < 0.2), the energy spectrum
in the southern sky for near horizontal trajectories (0.2  cos ✓rec < 0.6) and, finally, near
vertical trajectories with cos ✓rec � 0.6. However it is still interesting to study the agree-
ment of the predict zenith distributions between both approaches. Very good agreement
is observed, especially in the important energy range 5 TeV < Ereco < 10 TeV for both,
true and reconstructed, observables. Above 10 TeV the agreement remains good, except
for an excess in the prediction from CORSIKA over the neutrino-only simulation for very
vertical events. It indicates a systematic under-estimation of the veto e�ciency at high
energies by up to a factor of two for the vertical direction, but is not relevant for the
purpose of this work. In this region of observable space the atmospheric contribution to
the spectrum is su�ciently subdominant compared to the contribution from astrophysical
neutrinos (cyan), such that the di↵erence falls significantly below the sensitivity of the
experiment for the given total live time of four years (c.f. Fig. 4.13).
We finally separated the simulations by neutrino type, since the di↵erent neutrinos are
sensitive to di↵erent aspects of the veto-modeling. Muon neutrinos will be more sensitive
to the modeling of the correlations between muons and neutrinos from the same meson
decay, while electron neutrinos are only a↵ected by the modeling of the correlation be-
tween neutrino and muon stemming from di↵erent meson decays within the air-shower.
The corresponding reconstructed energy distributions are shown in Fig. 4.14 (top: ⌫µ,
bottom: ⌫e) for two zenith bands. While in general both simulations agree well, the
expected contribution of electron antineutrinos ⌫̄e (cos ✓⌫ > 0.2) from self-veto corrected
neutrino simulation appears systematically larger than the expectation from CORSIKA
simulation by ⇠ 40%. Since the overall contribution from ⌫̄e to the spectrum is su�-
ciently small, this does not pose a problem for this analysis. Further studies are required
to resolve the remaining discrepancies.

In summary, we demonstrated with full CORSIKA airshower simulations that the para-
metrization of the self-veto probabilities from [179][180] is su�ciently accurate to be used
in this analysis. It allows to calculate the expected atmospheric neutrino background
in the southern hemisphere from neutrino-only simulations and we find a veto-threshold
of Edet

µ,min = 100 GeV to perform best. The remaining discrepancies between this model
and CORSIKA simulations appear small compared to the other systematic uncertainties
discussed in this chapter and the corresponding systematic uncertainty will thus not be
included in the spectral likelihood fits presented in this dissertation.
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Chapter 5

Analysis Method and Statistics

In this dissertation we measure and characterize the astrophysical neutrino flux by match-
ing the expected energy and zenith distributions in our final data sample obtained from
Monte-Carlo simulations to the distributions observed in the experimental data. The sim-
ulations include all relevant physics (particle production, propagation, interaction, light
propagation, response of the detector electronics etc.) and measurement (event selection)
processes for di↵erent choices of astrophysical and atmospheric neutrino flux models as
well as di↵erent models of the detector response.

5.1 Modeling the Astrophysical Neutrino Flux

Throughout this analysis we assume the fluxes of the three neutrino flavors to be identical
(�⌫e : �⌫µ : �⌫⌧ = 1 : 1 : 1), independent of neutrino energy. Similarly, we assume the
contributions from neutrinos and anti-neutrinos to each flavor to be equal (�⌫x : �⌫̄x =
1 : 1). Finally, the astrophysical neutrino flux is assumed independent of arrival direction
and thus modeled isotropic: � (E, cos ✓dec., �ra.) = � (E).

5.1.1 Parametric Models

The Single Powerlaw

The default model for the astrophysical neutrino flux is the single powerlaw. It is fully
specified by two parameters: the spectral index � and a per-flavor normalization �0

corresponding to the total flux of neutrinos with flavor x 2 {e, µ, ⌧} at E = 100 TeV
with �0 = �⌫x+⌫̄x(E/TeV = 100):

� (E) /(GeV�1cm�2s�1sr�1) = 3 ⇥ 10�18 �0 ⇥
✓

E

100 TeV

◆��

�0 � 0

(5.1)
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The Single Powerlaw with Cuto↵

The single powerlaw model, while considered appropriate to model the neutrino flux in
a limited energy range, cannot be true regardless of energy. In order to preserve energy
conservation any physically motivated acceleration process cannot accelerate particles to
arbitrarily high energies. We therefore extend the single power law by an additional
parameter Ecut denoting the energy beyond which the total flux is assumed to vanish
exponentially:

� (E) /(GeV�1cm�2s�1sr�1) = 3 ⇥ 10�18 �0 ⇥
✓

E

100 TeV

◆��

⇥ exp

✓
� E

Ecut

◆

�0 � 0,
Ecut

TeV
> 0

(5.2)

The model reduces to the (unbroken) single powerlaw in the limit of Ecut ! 1.

The 2-Component Powerlaw

Since the true origin of the high energy astrophysical neutrinos, observed by IceCube, is
unknown at present, we consider the possibility that neutrinos are produced by di↵erent
types of objects. Here we consider the simplest extension of the single powerlaw to two
objects. We allow for the possibility that the fluxes from the di↵erent classes of objects
are di↵erent in intensity and shape. Thus the model has four parameters: the spectral
index �i and a per-flavor normalization �i,0 with i 2 {1, 2}. Since the likelihood function
will be invariant under the label-switch i = 1 ! 2 and i = 2 ! 1 it is useful to impose
an identifiability constraint [183]. Without loss of generality, we choose �1 > �2, i.e. the
second component in this power law mixture is identified as the one that has the harder
spectrum. The model becomes:

� (E) /(GeV�1cm�2s�1sr�1) = 3 ⇥ 10�18
X

i=1,2

�i,0 ⇥
✓

E

100 TeV

◆��i

(5.3)

�i,0 � 0, �1 > �2 (5.4)

The model reduces to the (unbroken) single powerlaw for �2,0 = 0 ⇥ GeV�1cm�2s�1sr�1.
The constraint in eq. (5.4) cannot easily be integrated into numerical minimization
algorithms. If numerical minimization is used, we thus use a di↵erent, but equivalent
parametrization:

� (E)

GeV�1cm�2s�1sr�1
=3 ⇥ 10�18 �0

(
(1 � ↵)


E

100 TeV

���soft

+ ↵


E

100 TeV

���soft+��
)

�0 � 0, 0 < ↵ < 1, �� � 0
(5.5)

with �soft = �1 and �soft��� = �2 where we refer to �� as the spectral hardening. Finally
�0 denotes the total flux at E = 100 TeV and relates to the previous parametrization
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with the mixing fraction ↵: �1,0 = (1 � ↵) �0 and �2,0 = ↵�0. In this parametrization
the (unbroken) single powerlaw is recovered for �� = 0.

The Broken Powerlaw

The broken power law, in contrast to the 2-component power law, can represent both:
a spectral hardening as well as a spectral steepening of the neutrino flux at some break
energy Eb. Spectral breaks in the fluxes of cosmic rays have been observed for various
types of particles, for example in protons [15] and electrons/positrons [184]. In addition
certain models for neutrino emission from gamma-ray bursts predict spectral breaks [39].
Here we consider the simplest case of a single spectral break.

� (E)

GeV�1cm�2s�1sr�1
= 3 ⇥ 10�18�b ⇥

(
(E / Eb)

��1 E  Eb

(E / Eb)
��2 E > Eb

Eb > 0 TeV, �b > 0

(5.6)

This model has four parameters: the break energy Eb, spectral indices �1 and �2 and the
total flux at the break energy �b = � (Eb). In order to maintain comparability to the
other models, we re-parametrize the model in terms of �0, the flux at E = 100 TeV.

�b = �0 ⇥
(

(100 TeV / Eb)
�1

(100 TeV / Eb)
�2 , �0 > 0

(5.7)

The model reduces to the single powerlaw for �1 = �2.

The Log-Parabolic Powerlaw

�-ray spectra of certain types of blazars have successfully been modeled with log-parabolic
powerlaws [185]. In such spectra the spectral index varies as function of energy. The same
parametrization has also been used to model the proton component in blazar jets [186],
producing neutrino spectra of similar shape. We use the following parametrization:

� (E)

GeV�1cm�2s�1sr�1
= 3 ⇥ 10�18 �0 ⇥

✓
E

100 TeV

◆��(E)

� (E) = � + b log (E/100 TeV)

�0 � 0, b � 0

(5.8)

This model consists of three parameters: spectral index � at E = 100 TeV, total flux
�0 at E = 100 TeV and the log-parabolic slope b that controls the logarithmic energy
dependence of �. The model recovers the single powerlaw for b = 0.

Fig. 5.1 compares the compares the di↵erent parametric models discussed above, starting
from the single powerlaw (black) with � = 2.5 and �0 = 1.6.
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Figure 5.1: Various parametric astrophysical neutrino flux models: the single power-
law (black) and extensions thereof (colors).

The Single Powerlaw Box

The single powerlaw assumes that the astrophysical neutrino flux is non-zero at all en-
ergies. Here we expand this model by limiting its domain. While not motivated by any
physics mechanism this model will be useful in the context of sensitivity studies by ad-
dressing the question what energy range the measurement of the astrophysical neutrino
flux presented in this dissertation is sensitive to. The “box“ is characterized by two ad-
ditional parameters: Elow and Ehigh that define the domain where the astrophysical flux
is non-zero

� (E) = �SP (E) ⇥ I (E) (5.9)

I (E) =

(
1 Elow  E  Ehigh

0 otherwise
(5.10)

where �SP denotes the single power law with infinite domain (entire real line). Of course
any of the models discussed above could be “boxified“ similarly.

The 2-Hemisphere Model

Thus far the di↵erent flux parameterizations, discussed above, assume the astrophysical
neutrino flux to be isotropic. This assumption can be relaxed by allowing it to di↵er
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between northern and southern hemispheres. The simplest possibility would be di↵erent
powerlaws in both hemispheres.

� (E)

GeV�1cm�2s�1sr�1
= 3 ⇥ 10�18 ⇥

(
�N ⇥ (E / 100 TeV)��N cos ✓⌫ < 0.0

�S ⇥ (E / 100 TeV)��S cos ✓⌫ � 0.0

�N � 0, �S � 0

(5.11)

While not necessarily corresponding to a scenario that is motivated by concrete astro-
physics, this model allows to test to what extent some of the conclusions drawn in this
work depend on the assumption of isotropy.

5.1.2 Non-Parametric Models

It is possible that none of the parametric models introduced above adequately describes
the true astrophysical neutrino flux. It is therefore helpful to study to what extent the
data can constrain the flux if less assumptions about its intensity and shape are made1.
This can be done by introducing a class of more flexible models that admit local changes
of the flux as function of energy. This increases variance in the resulting function estimate
compared to using one of the parametric models but would reduce bias if the true flux is
not well represented by any of the parametric models.

The Piecewise Model

We define the “Piecewise Model“ as the following step-function with N steps

✓
E

1GeV

◆2

⇥ � (E) = 3 ⇥ 10�8

NX

i=1

{�i ⇥ Ii (E)} (5.12)

Ii (E) =

(
1 Elow

i  E  Ehigh
i

0 otherwise
, �i � 0 (5.13)

It models the astrophysical neutrino flux as a segmented powerlaw with spectral index � =
2.0 and variable normalization. The flexibility of the model increases with larger values
of N . If all normalizations are identical (i.e. �i = �j, 8 i, j : 1  i, j  N) the solution
is identical to the single powerlaw with � = 2.0. This model requires certain choices:
the total number of segments N and the boundaries Ei of each segment: N = 12 and
log

10
(Emin

i /GeV) = 3.0 + (j � 1)/3 and log
10

(Emax
i ) = log

10
(Emin

i ) + 1/3, corresponding
to three segments per decade in neutrino energy.

1The non-parametric models used in this work remain finite dimensional. Our interpretation of the
term non-parametric thus follows the usage in [187].
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5.2 Modeling the Atmospheric Neutrino Flux

5.2.1 Conventional Atmospheric Neutrinos

Following previous IceCube measurements (e.g. [5][164][181][182][155]) we use the HKKMS06
flux model [99] to characterize the contribution from conventional atmospheric neutrinos
to the data sample obtained in this dissertation (c.f Sec. 1.7).

As discussed in Sec. 4.2.1 other models exist and their impact on the astrophysical
neutrino flux measurement needs to be evaluated. For this purpose we rely on MCEq
[169] to calculate the predicted conventional atmospheric neutrino flux for the di↵erent
hadronic interaction models:

• Primary Cosmic Ray Flux Model: Gaisser-Hillas 2012, ”H3a” [170]

• Atmospheric Density Model: NRLMSISE-00 [188]

• Hadronic Interaction Models:
SIBYLL 2.3c[173], QGSJETII-04[174], EPOS-LHC[175] and DPMJETIII-17.1[176][177]

We are only interested in the flux expectation averaged over an entire year. We therefore
perform the MCEq flux calculation for the two seasonal extremes of the atmospheric
conditions (January and June) and average the resulting fluxes. Thus in total we will
study five di↵erent atmospheric neutrino flux models. For each model the absolute flux
normalization is treated as a free parameter.

5.2.2 Prompt Atmospheric Neutrinos

Previous IceCube measurements (e.g. [5][164][181][182][155]) used the ERS flux calcu-
lation [101] as the default model to predict the contribution from prompt atmospheric
neutrinos. Since then, the authors have revised their calculation taking into account newly
available charm cross section measurements at LHC and RHIC to constrain their pertur-
bative QCD calculations. The resulting prediction, BERSS [102] is used as the baseline
model in this work. The absolute flux normalization is treated as a free parameter.

5.3 The Likelihood Function

The following exposition of the statistical methods used in this analysis will adopt the
notation and definitions of [189].

After observing a random sample X = (X1, ..., Xn) from the probability density f (x |✓)
(x 2 ⌦, ✓ 2 ⇥) with realized values X = x, we define the likelihood function L (✓ |x) as
follows

L (✓ |x) = f (x |✓) (5.14)
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where f (x |✓) is the joint probability density of the random sample X = x. Eq. (5.14)
implies that L (✓ |x) and f (x |✓) are very di↵erent functions. The domain of f (x |✓) is
the entire joint sample space ⌦ = ⌦n while the domain of L (✓ |x) is the parameter space
⇥. In particular L (✓ |x) is not normalized on ⇥ while f (x |✓), being a probability
density, is normalized on ⌦. Discussing the importance of the likelihood function for
statistical inference goes beyond the scope of this dissertation and we refer to [189][190]
and references therein.

In this analysis one would ideally define the sample as the set of all observed events and
their associated observables (reconstructed cascade variables: energy, direction, position,
and others, e.g. BDT scores) and construct the likelihood function from the joint (high
dimensional) pdf according to eq. (5.14). While this would make maximal use of the
available information, the resulting likelihood function would be intractable. Instead we
simplify the problem by focusing on the observables that provide the most information
about the energy spectrum as well as on whether or not events can be considered to
be of astrophysical origin. These are the reconstructed energy, the reconstructed zenith
angle and the three BDT scores: cascade, muon and starting track scores. Evaluating
their joint pdf remains intractable. We will therefore sort the events according to their
observables into bins, thus we discretize the observable space. We will define and justify
the binning used in this analysis later (see Sec. 5.6).
The discretized problem can be viewed as individual counting experiments in each bin i
of the analysis with total number of bins m. Thus X = N and Ni ⇠ Poisson (µi (✓)).
After observing N = (n1, ..., nm) we arrive at the following likelihood function using eq.
(5.14)

L (✓ |n) = f (n |µ (✓)) = ⇧m
i=1

p (ni | µi (✓)) (5.15)

p (ni | µi (✓)) =
µi (✓)

ni

ni!
exp (�µi (✓)) (5.16)

For reasons of numerical stability it is beneficial to work with the log-likelihood

log L (✓ |n) =
mX

i=1

{ni log µi (✓) � µi (✓)} + g (n) (5.17)

where g (n) consists of all terms that are independent of ✓ and thus contain no information
about the relative merits of two hypothesis ✓ = ✓1 and ✓ = ✓2. Therefore g (n) can be
ignored.

Including Calibration Measurements: Penalized Likelihood

It is often the case that additional and independent observations y from a density g (y |!)
are available, where ! denotes one of the components of the parameter vector ✓. For
example consider ! as an overall scaling factor that controls the amount of bulk ice
scattering in the ice. In this case y refers to an independent calibration dataset obtained
from IceCube’s LED calibration system.
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Using the independence of n and y one arrives at the joint log-likelihood

log L (✓�!, ! |n,y) = log L (✓�!, ! |n) + log L (! |y) (5.18)

where we made the dependence on ! explicit by removing it from the parameter vector
✓ thus arriving at the reduced parameter vector ✓�!. In practice a joint analysis quickly
becomes intractable, especially if several calibration measurements are considered. The
problem can be simplified by using a known parametrization (if available) of log L (! |y).
From asymptotic considerations (see Sec. 5.4, especially Eq. (5.23)) we know that !̂ �
!

d�! N
⇣
0 | �2

✓̂
|n!1

⌘
. Thus, assuming that asymptotic theory applies, we can ignore y

and write the contribution to the log-likelihood function in terms of the measured values
!̂ and �!̂ from the calibration measurement (based on data y):

log L (! |y) = log L (! | !̂, �!̂) = �(!̂ � !)2

2�2

!̂

(5.19)

where we dropped terms independent of !. Thus the final joint log-likelihood reads:

log L (✓�!, ! |n, !̂,⌃) =

(
mX

i=1

ni log µi (✓) � µi (✓)

)
� 1

2
(!̂ � !)T ⌃�1 (!̂ � !)

(5.20)

where ⌃ is the covariance matrix allowing for correlations between parameters of the
calibration measurements and generalizes Eq. (5.19) to the multivariate case.

Throughout this work we will use the penalized likelihood from Eq. (5.20).

5.4 Point Estimation, Hypothesis Testing and Inter-
val Estimation

Point Estimation

We will estimate unknown parameters ✓ of a model using the method of maximum like-
lihood unless mentioned otherwise. The maximum likelihood estimator ✓̂ (x) is defined
as the point ✓ = ✓̂ (x) (✓ 2 ⇥) at which the likelihood function (Eq. (5.14)) attains is
maximum value (with x kept fixed at its observed value).

✓̂ (x) = argmax
✓2⇥

L (✓ |x) (5.21)

This is equivalent to minimizing the negative log-likelihood, which is preferred for nu-
merical reasons.

✓̂ (x) = argmin
✓2⇥

(� log L (✓ |x)) (5.22)

128



Chapter 5. Analysis Method and Statistics

Maximum likelihood estimators (MLEs) have several attractive properties. They are
invariant under parameter transformations and (under some regularity conditions) con-
sistent2 and asymptotically e�cient3. Finally the asymptotic variance of the MLE is
related to the fisher information matrix I (✓) (under some regularity conditions)

�2

✓̂
|n!1 = Var ✓̂|n!1 =

1

I (✓)
= � 1

E✓

�
@2

@✓2 log L (✓ |X)
� (5.23)

or in multivariate form with covariance matrix ⌃i,j = (I (✓))�1

i,j :

I (✓)i,j = �E✓

✓
@2

@✓i @✓j
log L (✓ |X)

◆
(5.24)

Eq. (5.24) will be useful in the context of calculation covariance matrices from previous
measurements. For more details and definitions see [189].

Hypothesis Testing

Unless explicitly stated otherwise, throughout this thesis we will rely on likelihood ratio
tests (LRTs) to distinguish based on the observed data between two complementary
hypotheses, the null hypothesis H0 and the alternative hypothesis H1. The test is based
on the test statistic ⇤ (x) defined as follows

⇤ (x) =

sup
⇥0

L (✓ |x)

sup
⇥

L (✓ |x)
(5.25)

for testing the hypothesis H0 : ✓ 2 ⇥0 against the alternative H1 : ✓ 2 ⇥c

0. The test
rejects H0 for small values of ⇤ (x), i.e. its rejection region has the form {x : ⇤ (x)  c},
with 0  c  1 being a constant.
For the most part, hypothesis tests employed in this thesis are two-sided, i.e. of form
H0 : ✓ = ✓0 against H1 : ✓ 6= ✓0. In some cases we will test one-sided hypothesis of
the form H0 : ✓ � ✓0 (H0 : ✓  ✓0) against H1 : ✓ < ✓0 (H1 : ✓ > ✓0). In order
to find the constant c that bounds the rejection region of the test one can specify a
desired value for the size ↵ (0  ↵  1) of the test, where ↵ is defined as the maximum
Type-1 error probability across H0 (✓ 2 ⇥0). The corresponding value c = c (↵) can
then be determined from the sampling distribution of ⇤ (x) (see [189] for details). In
general, depending on the problem, finding c can be hard if not numerically impossible,
especially if the problem contains several nuisance parameters. These are parameters of
the model that do not explicitly enter the hypotheses being tested. In the context of this
dissertation these are those parameters that are unrelated to the astrophysical neutrino
flux, e.g. those that are needed to model the background fluxes and the detector response.

2The MLE converges to the true value as the sample size increases
3The variance of the MLE converges to Cramer Rao lower bound, a lower bound on the variance of

all possible estimators, as the sample size increases.
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For large samples sizes c (↵) can be obtained approximately by invoking Wilks’ theorem
[191]. Assuming certain regularity conditions the sampling distribution of �2 log ⇤ (x),
with ⇤ (x), as defined in Eq. (5.25), approaches a chi-squared distribution if H0 : ✓ 2 ⇥0

is true:

�2 log ⇤ (x)
d�! �2

k (5.26)

where k = dim (⇥) � dim (⇥0), i.e the degrees of freedom are given by the di↵erence in
the number of free parameters between both hypotheses. We confirmed the applicability
of Wilk’s theorem in the context of this analysis and the single-powerlaw model for
hypothesis tests of form H0 : (�, �) = (�0, �0) against H1 : (�, �) 6= (�0, �0) by calculating
the expected sampling distribution of �2 log ⇤ (x) from repeatedly performing the test
on replicated toy-data. The result is shown in Fig. 5.2 and matches the expectation from
eq. (5.26) very well.

Figure 5.2: Distribution of the profile-likelihood ratio test-statistic �2 log⇤ used to
define confidence regions: calculated from simulated toy experiments (red) and com-
pared to asymptotic expectation from Wilks’ thereom [191] (black).

For uni-variate one-sided tests one can show that the sampling distribution is of mixed
type, with p (�2 log ⇤ (x) = 0) = 1/2 and the remaining probability being distributed as
�2

1
[192][193]. Define ⇠ (x) = �2 log ⇤ (x) then

⇠ (x)
d�! f⇠ (⇠) (5.27)

f⇠ (⇠) =
1

2
⇥ I (0) + �2

1
(⇠) (5.28)

I (⇠) =

(
1 ⇠ = 0

0 ⇠ > 0
(5.29)

In cases where asymptotic considerations are inappropriate or regularity conditions are
violated we will determine the sampling distribution f⇠ (⇠ |✓) from simulating repeated
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measurements. Finally the corresponding p-value is defined as the probability of observing
a test statistic value providing equal or more extreme evidence against the null hypothesis
than the observed value ⇠obs4.

pval = sup
✓

p (⇠ � ⇠obs |✓) (5.30)

The rejection criterium ⇠ � c̃ is equivalent to pval < ↵.

Interval Estimation

The goal of constructing a confidence intervals or regions is to express uncertainty about
the parameters of interest taking into account the measurement process fX (x |✓) and
the observed data X = x. We define the coverage probability 1 � ↵ of a 1 � ↵ confidence
region S (X) as the probability that the (random) region S (X) contains ✓, i.e

p (✓ 2 S (X) |✓) = 1 � ↵, 8✓ 2 ⇥ (5.31)

In complicated problems exact coverage as defined by Eq. (5.31) cannot be guaranteed,
e.g. when the coverage probability is a function of the nuisance parameters  . In this
case we aim to guarantee minimal coverage

p (✓ 2 S (X) |✓,  ) � 1 � ↵, 8 (✓, ) 2 ⇥⇥ (5.32)

Throughout this work we will obtain confidence intervals from inverting a likelihood ratio
test5 of size ↵. If, for each ✓0 2 ⇥, we let A (✓0) be the acceptance region (in sample
space ⌦) of a likelihood ratio test H0 : ✓ = ✓0 of size ↵ we can construct a 1�↵ confidence
region from

S (X) = {✓0 : x 2 A (✓0)} , ✓0 2 ⇥ (5.33)

This definition/construction is general in that in encompasses several methods of interval
construction commonly used in physics [195]: profile likelihood intervals, Feldman-Cousins
intervals [196] and extensions thereof (e.g. Feldman-Cousins with nuisance parameters
[197]). Finally, it is worth pointing out that the shape of the confidence interval is
often related to the alternative hypothesis of the LRT that is being inverted. Two-sided
alternative hypotheses H1 : ✓ 6= ✓0 usually produce intervals (S (X) = [L (X) , U (X)])
that are bounded from above and below, while the inversion of one-sided tests H1 : ✓ < ✓0
(H1 : ✓ > ✓0) allows to set upper (lower) limits on ✓. However on bounded parameter
spaces two-sided intervals may also result in limits, as exploited by Feldman and Cousins
[196] for physical bounds of type ✓ � 0.

When applicable we will use asymptotic profile likelihood confidence intervals and regions
throughout this work. They are based on the asymptotic properties Eq. (5.26) of the
likelihood ratio test-statistic of Eq. (5.25). Define ⇠ (✓0 |x) = �2 log ⇤ (x) |✓=✓0 , i.e. the

4alternative p-value definitions exist: see the excellent review [194]
5more precisely we are inverting a family of hypothesis tests, one for each value ✓ = ✓0, ✓ 2 ⇥
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test statistic value for testing H0 : ✓ = ✓0 against H1 : ✓ 6= ✓0. Then

⇠ (✓0 |x) = �2
⇣
log L (✓0 |x) � log L

⇣
✓̂ |x

⌘⌘
(5.34)

Inverting the test and using Eq. (5.26) (i.e. ⇠
d�! �2

dim✓
) we find the following 1 � ↵

confidence region

S (X = x) = {✓0 : ⇠ (✓0 |x) <= ⇠crit} (5.35)

⇠crit = F�1

�2
dim✓

(1 � ↵) (5.36)

where F�1

�2
dim✓

denotes the inverse cumulative chi-squared distribution with k = dim✓. For

k = 1 this yields ⇠crit = 1 corresponding to the well known interval defined by the “rule“:
�2� log L  1. We intentionally left out possible nuisance parameters  to maintain
clean notation. The results remain fully general, as Eq. (5.25) makes no choice with
regard to which parts of the parameter space are considered of interest and which are
considered nuisance. The usually procedure of conditional likelihood minimizations w.r.t
 during “profile likelihood scans“ of the parameters of interest ✓ follows directly.

5.5 Goodness of Fit Considerations

In the previous paragraphs we discussed the central role of the likelihood function in
the context of addressing questions about parameters ✓ of a model M0 assumed to be
true. Goodness of Fit Tests are intended as a tool to question that assumption. Here
we will only discuss the saturated Poisson likelihood test [198] employed in this work.
It uses that the data is analyzed in bins corresponding to observations n with known
distribution ni ⇠ poisson (µi), see eqs. (5.15)-(5.18). We wish to test H0 : M0 is true
against H1 : M0 is false without actually specifying an alternative model M1. Unfortu-
nately H1, when formulated like that, is not a testable hypothesis. Instead we choose H1

su�ciently flexible, such that it encompasses the set of all possible models Mi that could
be constrained by the available data n, i.e. dim⇥i � dimn ⌘ N . The test becomes:
H0 : µ = µ (✓) against H1 : µ 6= µ (✓), where µ = {µ1, ...µN} is the vector of the
expected bin contents and ✓ is the vector of parameters defined under M0. Using eqs.
(5.25) and defining ⇠ (n) = �2 log ⇤ (n) we find the test-statistic advocated in [198]

⇠ (n) = 2
NX

i=1

(
µi

⇣
✓̂
⌘

� ni + ni log

 
ni

µi(✓̂)

!)
(5.37)

where ✓̂ is the MLE of ✓ as defined in eq. (5.21). Depending on the details of the
mapping µ (✓) one expects asymptotically (under the regularity conditions required by
Wilks’ theorem)

⇠ (n)
d�! �2

k, k = dim µ � dim ✓ (5.38)

Note, these derivations are based on the un-penalized likelihood from eq. (5.18) without
reference to any auxiliary calibration datasets y that would give rise to eq. (5.20). This
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raises the question of how these should be treated.
As discussed in Sec. 5.3 the “penalty terms“ in eq. (5.20) correspond to the following
sampling model for the MLE of the auxiliary measurement, replacing the true variance
⌃!̂ with its estimate ⌃̃!̂

!̂ ⇠ N
⇣
!, ⌃̃!̂

⌘
(5.39)

Using the notation from Sec. 5.3 the test becomes: H0 : µ = µ (✓�!, !) against H1 : µ 6=
µ (✓�!, !), where ! denotes the vector of nuisance parameters, as before. Superficially,
this formulation looks identical to the previous one. The di↵erence is implicit, since the
test is now defined on multiple samples and thus requires the joint likelihood defined in
eq. (5.20). H0 implicitly further requires that the nuisance parameters ! be “shared“
among datasets n and y, i.e. !n = !y ⌘ !, while H1 does not (obviously). Thus, the
dimensionality of the alternative hypothesis increased: dimµ + dim! > dimµ. After
maximizing the likelihood under both hypotheses, the test-statistic6 becomes

⇠
⇣
n, !̂ (y) , ⌃̃!̂ (y)

⌘
=2

NX

i=1

(
µi

⇣
✓̂
⌘

� ni + ni log

 
ni

µi(✓̂)

!)

+ [!̂ (y) � !̂ (n, y)]T ⌃̃
�1

[!̂ (y) � !̂ (n, y)]

(5.40)

where ✓̂ = ✓̂ (n, y) =
⇣
✓̂�! (n, y) , !̂ (n, y)

⌘
.

Note that ⇠(n, !̂ (y) , ⌃̃!̂ (y)) � ⇠ (n) for any (fixed) observation n, y and model M with
parameters ✓, since the calibration datasets y e↵ectively constrain the Models ability to
adept to the data n.
Depending on the details of the mapping µ (✓) one expects asymptotically (under the
regularity conditions required by Wilks’ theorem)

⇠
⇣
n, !̂ (y) , ⌃̃!̂ (y)

⌘
d�! �2

k, k = dim µ � dim ✓�! (5.41)

which means E[⇠(n, !̂ (y) , ⌃̃!̂ (y))] > E[⇠ (n)]7, as discussed above. We do not antic-
ipate the data sample obtained in this work to satisfy asymptotic requirements, since
several low statistics bins are expected/observed. We will thus determine the sampling
distribution of ⇠(n, !̂ (y) , ⌃̃!̂ (y)) from simulating toy experiments. How to perform
this sampling of the test-statistic is dictated directly from the details of the sampling
models for n and y. One example is shown in Fig. 5.3 using the single powerlaw model
(10 parameters, including detector model, cf. Sec 5.7) employed in this work, but with
an exposure corresponding to 200 years of data taking. The sampling distribution of the
un-penalized test-statistic (eq. (5.37)) corresponding to not including calibration data is
shown in blue, while the penalized test-statistic distribution (eq. (5.40)) is shown in red.
As expected from the discussions above, we observe a noticeable shift to larger values
that in this simulated case correspond to 5 additional degrees of freedom8 corresponding

6Note, eq. (5.40) is independent of any unknown parameters and is a function of observations only -
as required for a valid test-statistic!

7E[·] denotes the average value over repeated measurements
8we simulated the real scenario of “sharing“ 5 parameters with the calibration datasets, cf. Sec 5.8,

especially Tab. 5.3, i.e. dim✓ = 10, dim✓�! = 5
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Figure 5.3: Distribution of the “saturated poisson likelihood“ test-statistic �2 log⇤sat

used to loosely check for appropriate model fit: calculated from simulated toy experi-
ments (histograms) and compared to chi-square distributions (solid lines). Distribution
before inclusion of calibration data / constraints (blue) and after (red) - see text for
details.

to the auxiliary datasets.

It is worth highlighting that eq. (5.40) remains a goodness-of-fit test for the modeling of
the observations n (our sample) only, similar in spirit to eq. (5.37). This is because we
are only relaxing the model M that connects n with the parameters ✓ = (✓�!, !). The
model M 0 that connects the shared nuisance parameters ! to the auxiliary measurements
y remains unquestioned. We are thus not testing the validity of the model assumptions
that went into the calibrations measurements, as desired9. The construction of a full,
joint goodness-of-fit test for M̃ = (M, M 0) on z = (n, y) goes beyond the scope of (and
is not of interest for) this thesis. Finally, a possible rejection of the model M due to
large values of ⇠(n, !̂ (y) , ⌃̃!̂ (y)) can be due to two extremes. The data n is not well
described by the “best fit“ ✓̂ for model M , corresponding to large values of ⇠ (n), or,
assuming that M 0 is true, the best-fit values for the nuisance parameters !̂ (n, y) are in
conflict with the data y. Of course combinations thereof are possible.

5.6 Binning of Observables

The binning of the relevant observables (energy, zenith angle, event type) adopted in
this work is mostly based on considerations of systematic uncertainties and the expected

9The corresponding quality checks of the appropriateness of the modeling of the calibration data are
obviously done elsewhere - in the context of the calibration measurements themselves
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size of the data sample inferred from the 10%-burnsample. In general we prefer a large
number of bins in energy over a large number of bins in zenith, because of the system-
atic uncertainties in the modeling of the directional reconstruction of cascades (cf. Sec.
4.1.2). In addition to energy an zenith bins, we chose three event type bins: cascade sam-
ple, starting track sample, and single muon sample, corresponding to the event selection
discussed in Sec. 3.
The details of the binning are shown in Tab. 5.1 and are discussed below.

Single Muon Sample

The single muon sample contributes only a single bin to the likelihood function eq. (5.14).
This choice is dictated by limited computing resources that prevent us from generating
simulation datasets for the single muon background for varying assumptions of the de-
tector response. We are therefore unable to appropriately model the e↵ect of systematic
uncertainties on the single muon contribution, in particular the shape of the its energy
and zenith distributions. By limiting this sample to a single bin only we eliminate its sen-
sitivity to shape changes due to detector systematics. This sample thus only constrains
the e↵ective overall normalization of the single muon component in the combined fit. The
“bin“ is defined as follows: 2.6  log

10
Erec/GeV < 4.8 and �1.0  cos ✓rec  1.0.

Starting Track Sample

The starting track sample contributes 12 bins to this analysis. They are defined in the
range from 2.6  log

10
Erec/GeV < 4.8 with a width of � log

10
Erec/GeV = 0.2 and

�1.0  cos ✓rec  1.0, i.e. each bin contains events from the entire sky.

Cascade Sample

The cascade sample is the primary sample of this analysis. Here we use 66 bins in the
range from 2.6  log

10
Erec/GeV < 7.0 with a width of � log

10
Erec/GeV = 0.2, defined

separately for up-going events (northern sky, �1.0  cos ✓rec < 0.2), inclined down-going
events (southern sky, 0.2  cos ✓rec  0.6) and near vertically down-going events (southern
sky, 0.6 < cos ✓rec). The choice of using only three bins in the zenith angle is conservative.
While the available data statistics would allow for more bins, we unfortunately discovered
in this work that the reconstructed cascade directions are very sensitive to assumptions
about the optical transport of photons in the ice. As we will discuss below, we are able
to model the associated uncertainties using parameterizations obtained from simulations
(see Sec. 5.7), but the available simulation statistics quickly becomes insu�cient as the
number of bins grows. This is especially true for near vertical directions.
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Event Type Bin NBins Energy Range Width Zenith Range Widths

cascade sample 66 2.6 � 7.0 0.2 �1.0 � 1.0 1.2, 0.4, 0.4
starting track sample 11 2.6 � 4.8 0.2 �1.0 � 1.0 2.0
single muon sample 1 2.6 � 4.8 2.2 �1.0 � 1.0 2.0

Table 5.1: The binning of observables (reconstructed energy and zenith) used in the
maximum likelihood fit. Energy ranges are given in logarithmic units: log10E/GeV

.

Systematic Values

rel. DOM e�ciency 0.81, 0.90, 0.95, 0.99, 1.08
rel. scattering (bulk) �10%, ±0%, +10%
rel. absorption (bulk) �10%, ±0%, +10%
abs. scattering (HI) 30 cm, 50 cm, 100 cm

Table 5.2: Simulated variations of assumptions about the detector response to light
signals. The nominal values are marked in bold font.

5.7 Treatment of Systematic Uncertainties

The sources of systematic uncertainties and their impact on the observables of this anal-
ysis have been studied in Chapter 4. Here we discuss their statistical modeling and
treatment in the maximum likelihood fit.

5.7.1 Detector Systematics

The e↵ect of systematics variations of the detector model can only be evaluated at a few
discrete points within the parameter space preferred by calibration measurements, due
to the computationally expensive nature of the Monte Carlo simulations. The simulated
systematics scenarios are shown in tab. 5.2. The technical details of how to include those
uncertainties into a high-energy astrophysical neutrino flux measurement are the center of
recurring discussions within the IceCube Collaboration. One possibility is to consider the
systematics datasets as di↵erent discrete detector models, giving rise to discrete nuisance
parameters. These methods are fully appropriate if the corresponding e↵ect/process is
truly discrete in nature. None of the detector systematics considered in this work fall
into that category, however. They are intrinsically continuous, i.e. values in between
the simulated scenarios are as plausible as the ones that were actually simulated. If the
separation of the discrete points in the parameter space is large compared to the ability of
the data to distinguish the two cases, such a treatment will reduce to the special case of not
including systematic uncertainties at all. The extent to which this is appropriate depends
on the problem at hand, e.g. even for a fixed dataset it will depend on what hypotheses
and models of interest are being tested. Underestimating systematic uncertainties is a
real possibility in such cases.
In order to avoid this issue we will model continuous e↵ects with continuous nuisance
parameters. This requires interpolating between the di↵erent discrete points at which
the detector model was simulated. The likelihood function eq. (5.14) depends on the
nuisance parameters only via the expected number of events µi in the observable bin i.
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Figure 5.4: Per-bin parametrization of systematic e↵ects on expected number of
events relative to the nominal simulation in each bin. Here: impact of variations of
assumed dom-e�ciency on four example bins.

Interpolating between di↵erent discrete detector models thus becomes interpolating the
relative changes in the expected number of events (e�ciencies) ✏i,j (!j) as function of the
systematic nuisance parameter !j. The simplest relationship is linear:

✏i,j (!j) = µi (!j) /µ0

i (5.42)

✏i,j (!j) = 1.0 + ai,j ⇥
�
!j � !0

j

�
(5.43)

Assuming the e�ciency corrections ✏i,j (!j) for e↵ect j to be independent from e↵ect k
for (k 6= j), i.e. ✏i,j (!) = ✏i,j (!j) we can write

µi (!) = µ0

i ⇥ ⇧j✏i,j (!j) (5.44)

where µ0

i denotes the expected number of events in bin i when all systematics parameters
are at their baseline values (nominal detector simulation). The coe�cients ai,j can be
obtained from fitting eq. (5.42) to the simulated datasets, individually for each bin i
and nuisance parameter !j. The parametrization ensures that the model reduces the
the nominal detector simulation for ! = !0, while it recovers the simulated systematics
variation j with value !j = !sys

j for ! ⌘ (!�j, !j) = (!0

�j, !
sys
j ).

Fig. 5.4 shows the resulting parametrizations of the systematic DOM e�ciency variations
for four example bins. The simulated DOM e�ciency variations yield linear e�ciency
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corrections within each bin, as expected. The other detector systematics are treated sim-
ilarly. We verified our implementation by reproducing the discrete points at we which we
simulated di↵erent detector configurations from our parametrizations obtained from the
same simulations. The result is shown in Fig. 5.5 for electron neutrinos (top) and muon
neutrinos (bottom) that contribute to the final cascade sample. We recover the intended
models within deviations that are smaller than ⇠ 1% (⇠ 5%) for electron (muon) neutri-
nos. There are larger deficiencies at very small (< 1 TeV) or very high (> 1 PeV) energies.
At these energies the bins either do not contribute to the likelihood (log

10
E/GeV < 2.6)

or the expected number of data events in such bins is su�ciently small that such depar-
tures are negligible compared to the statistical uncertainties in those bins.
Due to the large di↵erences in the energy spectra of the di↵erent components (conven-
tional atmospheric neutrinos, prompt atmospheric neutrinos and astrophysical neutrinos)
and neutrino flavors it is necessary to perform the corresponding interpolations in each
bin i separately for all of them.

µi (!) =
X

j2{e,µ,⌧}

h
µconv ⌫,0
i,j ⇥ ⇧k✏

conv ⌫
i,j,k (!k) + µprompt ⌫,0

i,j ⇥ ⇧k✏
prompt ⌫
i,j,k (!k)

+ µastro ⌫,0
i,j ⇥ ⇧k✏

astro ⌫
i,j,k (!k)

i (5.45)

Finally, in order to speed up the computations, we derive the parameterizations of the
e↵ects of the detector systematics on the astrophysical component in the energy spectrum
only once, using the astrophysical best-fit parameters obtained from a fit based on the
nominal detector modeling (no systematic variations). The parameterizations are then
kept constant throughout the final fit including systematic uncertainties. Using the nom-
inal astrophysical model, the single power law, we have verified that this has negligible
impact on the results. Varying the astrophysical parameters assumed in the derivation
of the parametrization within reason yields relative changes in the final maximum value
of the log-likelihood function of O(10�4), while relevant scales for the purpose of this
measurement are O(1). Observed di↵erences in the best fit parameters are similarly
negligible.

When parametrizing the impact of changes in the hole ice scattering lengths � within the
range given by our simulations (30 cm, 50 cm, 100 cm) we first transformed the scattering
lengths into relative scattering coe�cients, measured relative to the scale set by the
default of 50 cm:

↵HI (50 cm) ⌘ 1.0 (5.46)

↵HI (�) =
50 cm

�
(5.47)

This allows to treat hole-ice scattering on the same scale as bulk-ice scattering and ab-
sorption. On this relative scale the holeice scattering length of 30 cm corresponds to
↵HI = 1.67.

138



Chapter 5. Analysis Method and Statistics

Figure 5.5: Comparison of (linearly) parametrized systematics to the simulation pre-
diction used to create the parameterizations: electron neutrinos (top) and muon neu-
trinos (bottom). Up-going events (left) and down-going events (Right). The simulation
prediction can be recovered within a ⇠ 1% (⇠ 3%) for electron neutrinos (muon neu-
trinos).

5.7.2 Atmospheric Background Systematics

Primary Cosmic Ray Spectrum

Uncertainties related to the primary cosmic-ray flux a↵ect all three background com-
ponents: atmospheric muons, atmospheric conventional as well as prompt neutrinos, as
discussed in Sec. 4. Following previous IceCube measurements (e.g. [199]) we account
for uncertainties in the energy spectrum of cosmic rays at energies relevant for this work
by allowing for cosmic-ray spectral index �CR to vary within ���CR = 0.05. This is im-
plemented using energy dependent correction factors to the event weights w0

i that are
obtained from the nominal flux assumption for every event i:

wi (E, ��CR) = w0

i ⇥
✓

E

E0

◆���CR

(5.48)

E0 denotes the median neutrino (muon) energy that is expected for this selection from
the nominal flux model. For the three components we found:
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• conventional ⌫: E0 = 1.8 TeV

• prompt ⌫: E0 = 5.1 TeV

• cosmic-ray µ: E0 = 2.2 TeV

Choosing E0 as the median predicted neutrino (muon) energy, while fully general, reduces
the correlation between ��CR and the overall normalization of the respective component
in the final fit [200]. The impact on the observables has been discussed in Sec. 4.2.1.

Hadronic Interaction Models

At energies relevant for this work, the uncertainties in the conventional atmospheric
neutrino flux due to uncertainties in the modeling of hadronic interaction is larger than
that related to the primary cosmic ray flux (c.f. Sec. 4). Unfortunately there does
not appear to be an “obvious“ prescription on how they best be treated. In Sec. 5.7.1
we argued that continuous modeling of continuous systematic uncertainties should be
preferred over a discrete statistical treatment to avoid underestimating them. In the
context of hadronic interaction models it is not obvious how such a continuous model could
be achieved. As we will see later on, hadronic interaction uncertainties are subdominant
to the detector related ones. We therefore decided to treat them as discrete possibilities.
When construction confidence intervals (c.f. Sec. 5.4) and contours for our fit parameters,
we will repeat the calculation for the di↵erent hadronic interaction models. The combined
likelihood will at each point in parameter space be given by the minimum likelihood
value from the set of values obtained with the discrete choices. The following post-LHC
hadronic interaction models will be used:

• DPMJETIII v.17.1

• QGSJETII v.04

• EPOS LHC v.XX

• SIBYLL v.2.3c

• HKKMS0610

Prompt Atmospheric Neutrinos

We account for systematic uncertainties in the theoretical calculation of the prompt
atmospheric neutrino flux by allowing its total normalization to be a free parameter
in the fit. Since the contribution from prompt neutrinos to this sample is expected to be
subdominant at all energies and zenith angles, small di↵erences in the spectral shape of
the prompt neutrino flux can be ignored.

10The hadronic interaction model used by HKKMS06 in [99] is a modification based on DPMJETIII.
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Figure 5.6: Constraints on global changes in scattering and absorption of the ice (from
calibration data [125] (left). Implementation as bi-variate normal measurement error
into this analysis (right). Red points mark available systematics simulation datasets.

5.8 Parameter Constraints from Calibration Data and
Prior Information

As discussed in Sec. 5.3 we model the parameter constraints obtained from indepen-
dent calibration measurements using a multi-variate normal11 measurement model. In
this particular case they can be sub-divided into three independent univariate normal
distributions (dom e�ciency, hole ice scattering scale and cosmic-ray spectral index de-
viation) and one bivariate normal distribution (optical properties of bulk ice: scattering
and absorption). The corresponding contribution to the likelihood function eq. (5.20)
reads

1

2
(!̂ � !)T⌃�1 (!̂ � !) =

1

2

✓
✏doms � ✏̂doms

�✏

◆2

+
1

2

✓
↵HI � ↵̂HI

�↵

◆2

+
1

2

 
�� � �̂�

���

!2

+
1

2
(↵BI � ↵̂BI)

T ⌃�1

BI (↵BI � ↵̂BI)

(5.49)

The numerical values for the various quantities ⇠̂ and �⇠ are given in Tab. 5.3 and
follow from the discussions in Sec. 4 and Sec. 5.7. The bivariate treatment of the
optical properties of bulk-ice is needed, since the measurement of the absorption and
scattering scales revealed anti-correlation between those two parameters. Fig. 5.6 shows
the original measurement (left) and our bivariate approximation (right) based on input
of IceCube’s calibration group (three red points)12. Our approximation is characterized
by a correlation coe�cient of ⇢ = �0.1 and marginal standard deviations of �i = 0.07.

11In practice we truncated the allowed values of some of the nuisance parameters at zero.
12Three points are su�cient to uniquely define an ellipse of its center is known.
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Nuisance Parameter Symbol Calibration Result Calibration Uncertainty

rel. dom e�ciency ✏dom 0.99 0.10
rel. scattering (hole ice) ↵HI 1.00 0.67
rel. absorption (bulk ice) ↵abs 1.00 0.07 (⇤)
rel. scattering (bulk ice) ↵scat 1.00 0.07 (⇤)

cosmic-ray index deviation ��CR 0.0 0.05
muon flux norm �µ � �
conv flux norm �conv � �

prompt flux norm �prompt � �

Table 5.3: Summary of constraints (uncertainties) on systematics related nuisance
parameters from calibration measurements.

IceCube has attempted to measure the prompt neutrino flux several times in the past
[164][201]. Since no prompt flux was observed, limits on its normalization were obtained.
In particular measurements using through-going muon neutrinos from the northern sky
derived strong constraints. It is very tempting to include these previous studies as in-
dependent calibration measurements. This is problematic. As discussed in Sec. 5.3 the
corresponding penalty terms are simply an approximation to a joint analysis of both
datasets (main dataset + calibration dataset). If the two studies share additional param-
eters they would thus need to be included as well. In other words eq. (5.20) only applies
if all shared parameters required to model datasets x and y are accounted for, so they can
be jointly maximized during subsequent analysis. In particular eq. (5.20) does not apply
if a subset of the shared parameters has been “removed“ from the calibration result via
explicit profiling - which is the case if only the prompt limit was used. One could attempt
to construct a multi-variate parametrization of the likelihood function that characterizes
the information contained in the previous measurement. Because of the large number
of parameters involved, we believe this to be hopeless and that it better be left to an
explicit joint analysis in form of a global fit (e.g. [199][202]). Additional complications
arise when both measurements disagree on some of the shared parameters that could be
indicative of insu�ciencies in the model itself. For example the astrophysical neutrino
spectra inferred from measurements using through-going muons from the northern sky
appear in mild tension with those obtained from cascade dominated measurements that
are more sensitive to the Southern Sky at lower neutrino energies. We thus decided not
to include any constraints on the prompt neutrino flux normalization that are rooted in
previous IceCube measurements.
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Chapter 6

Results

According to our analysis the data sample is well described by the statistical model
introduced in Chapter 5 and corresponding assumptions, including the choice of modeling
the astrophysical neutrino flux using a single, unbroken powerlaw. In particular we find

Figure 6.1: Best-Fit reconstructed cascade energy spectrum: estimated contribution
from astrophysical electron and tau neutrinos (thick red line) as well as muon neutrinos
(thin red line). Upper-limit on prompt atmospheric neutrino contribution (light blue)
at 90% C.L.

143



Chapter 6. Results

a soft spectral index

�astro = 2.53+0.07
�0.09 (6.1)

and a total astrophysical neutrino flux per neutrino flavor

�100TeV

⌫x+⌫̄x = (1.58+0.25
�0.28) ⇥ 10�18 GeV�1cm�2s�1sr�1 (6.2)

at a neutrino energy of 100 TeV. The best-fit values and uncertainties obtained for all
parameters are given in Tab. 6.1. Fig. 6.1 shows the corresponding energy spectrum for
all events in the cascade sample, i.e. events consistent with cascade-like light emission
and arrival directions from the entire sky. As described in Sec. 5.6, the fit is performed
after grouping events additionally according to arrival direction into three bins. The cor-
responding cascade energy spectra for near vertically down-going (cos ✓rec > 0.6), near
horizontally down-going (0.2 < cos ✓rec  0.6) and all up-going trajectories (cos ✓rec  0.2)
are shown in Fig. 6.2 and Fig. 6.3 (top left and top right) respectively. The spectrum
obtained with the control sample of starting tracks is shown in Fig. 6.3 (2nd row, left)
as well. We observe excellent agreement between the data the expectations from the
best-fit as evidenced by a corresponding goodness-of-fit p-value of 0.59 (c.f. Sec. 5.5),
obtained from repeatedly performing the fit on replicated, artificial datasets, called toy-
experiments hereafter 1, as shown in Fig. 6.3 (2nd row, right). The agreement is observed
in all four spectra, even the nearly vertically down-going selection, despite very di↵erent
composition (astrophysical signal, atmospheric backgrounds, event signatures) and there-
fore di↵erent sensitivity to the various systematic uncertainties identified to be relevant
for this work.
All spectra show the contribution from astrophysical electron and tau neutrinos (cas-
cades) as thick red line, while the contribution from astrophysical muon neutrinos (tracks)
is marked by the thin red line. As expected by design of this analysis, the contribution

1This procedure is known as parametric bootstrap in statistics.

Parameter Calibration Result ±1� (< 90% upper limit)

spectral index � - 2.53+0.07
�0.08

norm astro � - (1.58 ± 0.25) c.u.
norm conv �conv - (1.02+0.13

�0.11) ⇥ �HKKMS06

norm prompt �prompt - < 4.8 ⇥ �BERSS

norm muon �muon - 1.42 ± 0.04
cosmic ray index dev. ��CR 0.00 ± 0.05 0.04 ± 0.03
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.03 ± 0.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 1.00 ± 0.04
scattering scale (HI) ✏abs 1.00 ± 0.67 1.68+0.19

�0.18

DOM e�ciency ✏eff 0.99 ± 0.10 1.04+0.08
�0.07

�2 log⇤sat 65.03 p-value 0.59

Table 6.1: Best-Fit values for all parameters, assuming the single power-law astro-
physical flux model and the default conventional flux model (HKKMS06 [99]). There-
fore the uncertainties on �, � do not yet include hadronic interaction uncertainties. (⇤)
calibration constraints are anti-correlated, c.f. Fig. 5.6.
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Figure 6.2: Best-Fit reconstructed cascade energy spectrum (cos ✓rec > 0.6): esti-
mated contribution from astrophysical electron and tau neutrinos (thick red line) as
well as muon neutrinos (thin red line). Upper-limit on prompt atmospheric neutrino
contribution (light blue) at 90% C.L.

from muon neutrinos to the cascade sample, containing almost all of the astrophysi-
cal neutrinos, is strongly dominated by the contribution from electron and tau neutrinos.
Correspondingly, the spectral properties of the astrophysical neutrino flux, obtained here,
apply predominantly to the astrophysical electron and tau neutrino flux. The ability to
distinguish event-types (cascades, starting tracks) is most visible in the starting track
spectrum, Fig. 6.3 (2nd row, left), which is mostly composed of conventional atmospheric
muon neutrinos (dark blue) with negligible contribution from conventional atmospheric
electron neutrinos (light blue). While subdominant overall and in stark contrast to the
cascade samples, the starting track spectrum is estimated to contain more astrophysical
muon neutrinos than electron and tau neutrinos. According to our best-fit, when averaged
across the entire sky, astrophysical electron and tau neutrinos dominate the observed cas-
cade energy spectrum above reconstructed energies of ⇠ 25 TeV over atmospheric back-
grounds (atmospheric muons, conventional and prompt atmospheric neutrinos). They
remain dominant at even lower energies, if only near-vertically down-going events are
considered. The atmospheric self-veto e↵ect (c.f. Sec. 4.2.3) significantly reduces the
atmospheric neutrino background and astrophysical neutrinos are estimated to remain
dominant down to reconstructed energies of ⇠ 6 TeV (cos ✓ > 0.6). Fig. 6.4 (top) shows
the zenith distribution of all cascade events with reconstructed energies above 10 TeV.
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Figure 6.3: Best-Fit reconstructed cascade energy spectrum: 0.2 < cos ✓rec  0.6
(top left), �1.0  cos ✓rec  0.2 (top right). Best Fit reconstructed starting track
energy spectrum (bottom left): estimated contribution from astrophysical electron and
tau neutrinos (thick red line) as well as muon neutrinos (thin red line). Upper-limit
on prompt atmospheric neutrino contribution (light blue) at 90% C.L. Goodness-of-Fit
test-statistic distribution from toy experiments (bottom right)

The zenith dependence of the atmospheric self-veto e↵ect manifests itself as a zenith de-
pendence in the ratio between astrophysical (red) and atmospheric neutrinos (blue). It is
worth pointing out that the shape agreement, especially in the up-going region, between
data (black) and simulation (grey) can to some degree be regarded as independent confir-
mation of our best-fit model, since the fit itself was performed in three zenith bins only.
The overall agreement remains good if the energy threshold is varied, as shown in Fig.
6.4 (middle left: E > 60 TeV, middle right: E > 25 TeV, bottom left: E > 5 TeV, bottom
right: all energies). However at low energies (bottom row) and for very vertically up-going
trajectories (�1.0  cos✓rec  �0.8) we observe a significant departure of the number of
observed events from the best-fit expectation for as of yet unknown reasons, potentially
related to the refrozen ice in IceCube’s drill holes. Since the corresponding contribution
from that region to the up-going cascade sample (cos✓rec < 0.2) is small (⇠ 18%), this
model deficiency does not appear to impact the overall goodness-of-fit of the result and
thus this measurement of astrophysical neutrinos as such. We suspect that the in-situ
PMT acceptance for vertical photon trajectories (i.e. head-on illumination) might not be
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Figure 6.4: Best-Fit reconstructed cascade zenith distributions: Erec > 10TeV (top),
Erec > 60TeV (middle left), Erec > 25TeV (middle right), Erec > 5TeV (bottom left),
all energies (bottom right).

147



Chapter 6. Results

Figure 6.5: Best-Fit reconstructed energy spectrum in single muon sample: esti-
mated contribution from astrophysical electron and tau neutrinos (thick red line) as
well as muon neutrinos (thin red line). Upper-limit on prompt atmospheric neutrino
contribution (light blue) at 90% C.L.. Only the normalization is used in the fit.

modeled su�ciently accurate. In fact, as pointed out in [203], such photon trajectories
can not be probed well though IceCube’s standard LED calibration system. Simulations
with varying photon e�ciencies as function of photon impact angle are currently being
performed to test this.

The contribution from atmospheric muon background to the two neutrino samples, cas-
cades and starting tracks, has been estimated to ⇠ 8% and ⇠ 3%, respectively. The
contribution from atmospheric muons is only noticeable in the cascade sample for near-
vertical trajectories at lowest energies, as shown in Fig. 6.2. The appropriateness of the
modeling of the single muon energy spectrum can be checked much better using the muon
control sample. In this sample the muon contribution is estimated to be ⇠ 65% and, given
the large statistics, allows for a clearer picture. The corresponding energy spectrum is
shown in Fig. 6.5 and good agreement between data and simulation is observed. Note
that in the fit we only use the total number of events (i.e. no shape information), since,
due to the lack of su�cient simulation, we were unable to parametrize the corresponding
systematic uncertainties (c.f. Sec. 5.6). The observed level of shape agreement can thus
be viewed as independent confirmation of the method.

The main result of the statistical analysis assuming the astrophysical flux to follow a
single, unbroken powerlaw is shown in Fig. 6.6 (top left): the two-dimensional confidence
region of the two parameters �astro and �astro (blue) in comparison to the expectation
from the Asimov dataset (red) and an alternative fit performed in only two zenith bins
separated at cos ✓ = 0 (green). All three contours appear very similar, which means
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Figure 6.6: Top: Confidence contours for astrophysical flux parameters (left) ob-
served in the data (blue) and median expectation (red). Two-dimensional sampling
distribution of the best-fit values in comparison to median expected confidence contour
(right). Bottom: Sampling distributions of astrophysical parameters: � (left) and �
(right).

that this measurement delivered the expected precision and the result appears stable
against reasonable changes in the binning of the reconstructed zenith direction. Since
the Asimov dataset only provides a statement about expected (median) test-statistic
values [192], we studied the sampling distribution of the astrophysical best-fit values,
assuming that the true values realized in nature coincide with the ones we have actually
measured. This is again done by repeating the entire statistical analysis on replicated toy
experiments. The result is shown in Fig. 6.6 (top right), where each point represents
the solution obtained from one particular replication. The previously mentioned expected
confidence contours from the Asimov dataset are shown in red. In addition we estimate
equal-density contours that contain 68% (90%) of the replicated measurement results.
They are shown in black and coincide reasonable well with the ones inferred from the
Asimov dataset. We do, however, notice that the distribution of the replicated results
appears slightly shifted to lower astrophysical normalization compared to the injected
true value (red star). This is better visualized in Fig. 6.6 (bottom right). On average we
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Figure 6.7: Sampling distribution of prompt atmospheric neutrino flux normalization
�prompt (top left). Two-dimensional conditional sampling distribution of astrophysical
flux parameters (�̂prompt > 0) (top right). Corresponding one-dimensional conditional
sampling distributions (bottom).

would expect to measure a astrophysical normalization of 1.50 · 10�18 GeV�1s�1sr�1cm�2

compared to the true value of 1.58 · 10�18 GeV�1s�1sr�1cm�2 (vertical blue line, usual
units), which implies the presence of a small (relative to the total variance) bias of �5%
in the normalization measurement - if the true values realized in nature were given by
our actual best fit (see Tab. 6.1). The astrophysical spectral index measurement instead
appears approximately unbiased, as shown in 6.6 (bottom left). From a mathematical
perspective, the existence of such a bias is not necessarily surprising, since maximum
likelihood estimators do not guarantee unbiasedness for finite samples. This sample,
however, is su�ciently large that several large sample theorems hold true, for example
Wilk’s theorem (c.f. Sec. 5.4) and, furthermore, such a bias has not been discussed in
the context of previous IceCube measurements. The observed bias can be understood
by focusing on the sampling behavior of best-fit values for the �prompt parameter, the
normalization of the prompt atmospheric neutrino contribution for which we injected
�prompt = 0 · �BERSS as true value. The distribution is shown in Fig. 6.7 (top left) and
consists of two components: a sharp peak at/near �prompt = 0 · �BERSS (⇠ 60% of the
results) and a large tail extending up to �prompt = 10 · �BERSS. If we only consider the
solutions that contribute to the peak at zero, the bias in the corresponding results for
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the astrophysical normalization vanishes, see Fig. 6.7 (top right, bottom row) and the
correct astrophysical normalization is recovered. Thus the bias is a boundary e↵ect. We
restricted the parameter space of the prompt normalization to positive values and hence
only upward fluctuations can produce non-zero best-fit values leading to a reduction in
the measured astrophysical normalization in order to preserve the total number of events.
Due to the boundary restriction, this e↵ect can not be balanced by downward fluctuations
in the data. Thus, the bias is understood and, in particular, does not indicate an issue
with our measurement. We will come back to similar non-trivial boundary e↵ects in the
context of hypothesis tests for additional complexity in the astrophysical flux model (c.f.
Sec. 6.6). Finally, we would like to point out that the inferred sample standard deviations
of �� = 0.07 and �� = 0.24 compare well to the uncertainties that we determined for the
actually observed dataset (see Tab. 6.1).

6.1 Impact of Systematic Uncertainties

The relevant sources of systematic uncertainties and their implementation in this statis-
tical analysis are discussed in Sec. 4 and 5.7. Fig. 6.8 (top) shows the correlation matrix
visualizing the correlations among all 10 parameters in the fit. Since this matrix is sym-
metric, only the main diagonal and the lower triangle are shown. Of particular interest
are correlations between the parameters of interest (�astro, �astro) and the nuisance pa-
rameters that encode systematic uncertainties. We find the astrophysical spectral index
�astro to be only weakly correlated with most parameters, except for the prompt atmo-
spheric and astrophysical neutrino flux normalizations. Compared to the spectral index,
the astrophysical flux normalization �astro shows stronger (anti)correlations with various
nuisance parameters, most prominently the conventional atmospheric neutrino normal-
ization and the relative photon detection e�ciency of the IceCube optical modules. We
studied the relationships between the parameters of interest and the nuisance parameters
in more detail by first varying the parameter of interest and then re-fitting the nuisance
parameters. Subsequently we repeat the same for the nuisance parameters. The result is
shown in Fig. 6.8 (middle and bottom rows). Increasing the value for the astrophysical
normalization also increases the inferred conventional normalization but decreases the re-
quired relative e�ciency of the DOMs to photons. One might wonder how increasing the
background normalization can simultaneously increase the signal normalization. This is
possible because signal and background contributions dominate at di↵erent energies (see
Fig. 6.1) and thus are not expected to strongly influence each other. The astrophysical
normalization is mainly influenced by variations in the relative DOM e�ciency, because
it is defined at a neutrino energy of E⌫ = 100 TeV but the mapping between true neu-
trino energy and reconstructed neutrino energy depends on the true value of the DOM
e�ciency (c.f. Sec. 4). Altering the DOM e�ciency, however, also has a strong influence
on the selection threshold of Qtot = 100 p.e and therefore influences the normalization of
the conventional background at low energies. This explains the strong anti-correlation
(⇢ = �0.9) that is observed between conventional normalization and DOM e�ciency (see
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Figure 6.8: Correlation matrix of all fit parameters (top). Correlations between
parameters of interest �astro, �astro with nuisance parameters (middle, bottom).
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Fig. 6.8, top) and demonstrates the importance of interactions across multiple fit param-
eters2.
When the astrophysical normalization is decreased the prompt astrophysical normal-
ization becomes important, since, at least for arrival directions that are not impacted
by self-veto suppression, it adds to the total number of expected events at high energies,
where conventional atmospheric neutrinos do not contribute. The influence of the prompt
atmospheric neutrino flux is more visible for the astrophysical spectral index � (see Fig.
6.8, bottom right). Increasing its value from the best fit of �prompt = 0 · �BERSS by 2�
would harden (decrease) the astrophysical spectral index to � = 2.45.

Figure 6.9: Impact of systematic uncertainties on confidence contour on astrophysical
parameters of interest. Top: impact of prompt normalization. Bottom: impact of hole-
ice and other detector systematics (left); Comparison of Wilks’ contours to Bayesian
HPD contours (right).

2In fact, when designing this analysis one could have easily argued, given their large anti-correlation,
not to include both parameters, �conv and ✏DOM , and instead use a single ”e↵ective” parameter. From
the discussion it should be clear that his would have failed to account for an important contribution to
the total systematic uncertainty in the measurement of �astro.
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Fig. 6.9 (top left) shows the preferred value of the atmospheric prompt neutrino flux
normalization as a function of both astrophysical parameters. As expected from the
discussions above, towards astrophysical fluxes with less intensity and harder spectral
shape, the data requires the presence of a soft atmospheric prompt flux with increasing
normalization. Fig. 6.9 (top right) compares the nominal two-dimensional confidence
region for the astrophysical parameters (blue) to an alternative one, that assumes an
(unrealistic) universe without prompt atmospheric component (green). The latter is
smaller for obvious reasons and the di↵erence between both, while not large compared to
the total area, can be regarded as the contribution from systematic uncertainty related to
the strength of the prompt atmospheric flux to the total uncertainty in the astrophysical
flux measurement. The impact of the remaining nuisance parameters on the contour
is shown in Fig. 6.9 (bottom left). Here, the green contour corresponds to a scenario
in which all detector-related systematics parameters are known and kept fixed at their
nominal values - except for the scattering length of the hole-ice which we fixed to 30 cm.
Thus, only statistical uncertainties and uncertainties related to the intensities of the
background fluxes contribute. The contour is noticeably smaller than the nominal one
(blue). Also shown, in red, is the same calculation but assuming a detector with a 50 cm
scattering length inside the bore holes. While strongly disfavored by the available data
(cf. Sec. A.2) we observe a relatively small (< 1�) increase of the inferred astrophysical
normalization. We thus consider the astrophysical fit results, presented here, to be robust
against significant changes in the hole-ice modelling. Besides the crucial impact of the
hole-ice model on the fit quality, one might wonder how the quality of the fit is further
influenced by the remaining four systematic parameters and the corresponding constraints
from auxiliary data. Assuming the 30 cm hole ice model to represent the true detector
response together with all other detector-related systematic parameters to kept fixed at
their nominal values, we would still find an acceptable goodness of fit p-value of 39%
(this scenario corresponds to the green contour in Fig. 6.9, bottom left). This question
can be re-framed by asking whether the dataset in this work (together with the auxiliary
datasets) provides evidence for further departures from the nominal detector and flux
models beyond the change in hole-ice scattering. In other words, is this neutrino dataset
inconsistent with the calibration measurements? The corresponding likelihood ratio test,
which requires comparison to a fit without auxiliary constraints, yields p = 0.55 and thus
is not significant3. This result of course would not justify to remove the ”insignificant”
parameters from the model. As argued in Sec. 5.7 they are needed to realistically model
the corresponding systematic uncertainties.

We finally studied whether a di↵erent statistical treatment of the nuisance parameters
would have led us to di↵erent conclusions. This is done by repeating the analysis using
Bayesian methods. In particular we now interpret the constraints derived from auxiliary
measurements as prior information to be encoded via corresponding prior probability
distributions. We then calculate the joint posterior distribution of all 10 parameters and
arrive at he two-dimensional joint posterior distribution of the astrophysical parameters
(�, �) by marginalizing over the remaining 8 nuisance parameters. The 68% (95%)
highest posterior density credible regions compare very well to the 68% (95%) confidence

3This takes into account the uncertainty in the calibration measurements. We could ignore it and
pretend to have perfect calibration measurements. In this case one would test against the nominal values
only. The result remains insignificant with p = 0.07.
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contours from before. The joint posterior distribution for the astrophysical parameters is
shown in Fig. 6.9 (bottom right) together with the aforementioned contours.

Uncertainties Related to Hadronic Interactions

Figure 6.10: Left: Impact of di↵erent hadronic interaction models on confidence
contour - before consideration of detector systematics (dashed) and after (solid). Top
right: statistical combination of hadronic interaction uncertainties. Bottom: Table of
best-fit values for each alternative interaction model.

We discussed in Sec. 4.2.1 that uncertainties in the modeling of hadronic interactions
e↵ect the shape and normalization of the atmospheric conventional neutrino flux predic-
tion, the largest background for our analysis of astrophysical neutrinos. We investigated
the sensitivity of our astrophysical flux measurement to the details of the hadronic in-
teraction models by replacing the nominal conventional flux prediction by alternatives
calculated with MCEq [169] for the following hadronic interaction models: SIBYLL 2.3c,
EPOS-LHC, QGSJETII v04 and DPMJETIII 17.1 (c.f. Sec. 5.7). The results are given
in Tab. 6.2. The best-fit values for the astrophysical spectral index range from � = 2.48
(SIBYLL 2.3c) to � = 2.51 (DPMJETIII-17.1). All alternative hadronic models consid-
ered yield insignificantly harder spectral indices than the nominal one. The quality of
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Parameter Hadronic Model Result ±1� �2 log ⇤sat

spectral index � 2.51+0.07
�0.08

norm astro � (1.54+0.24
�0.26) c.u.

cosmic ray index dev. ��CR 0.01 ± 0.03
norm conv �conv DPMJETIII-17.1 (1.15+0.14

�0.13) ⇥ �MCEq 65.2
spectral index � 2.49 ± 0.07
norm astro � (1.61+0.26

�0.22) c.u.
cosmic ray index dev. ��CR 0.05 ± 0.03
norm conv �conv EPOS-LHC (0.93+0.12

�0.10) ⇥ �MCEq 67.4
spectral index � 2.51+0.07

�0.08

norm astro � (1.58 ± 0.25) c.u.
cosmic ray index dev. ��CR 0.04 ± 0.03
norm conv �conv QGSJETII-04 (0.99+0.12

�0.11) ⇥ �MCEq 65.3
spectral index � 2.48 ± 0.07
norm astro � (1.60+0.26

�0.22) c.u.
cosmic ray index dev. ��CR 0.05 ± 0.03
norm conv �conv SIBYLL-2.3c (1.02+0.13

�0.11) ⇥ �MCEq 67.5

Table 6.2: Table of best-fit values for each alternative interaction model.

the fit for QGSJETII v0.4 and DPMJETIII-17.1 is very similar to the default result pre-
sented earlier in this Chapter, while the predictions from SIBYLL-2.3c and EPOS-LHC
lead to larger values for �2 log ⇤sat by about 2.5 units. This di↵erence is small compared
to the standard deviation (⇠ 12 units) of the chi-squared distribution that governs the
goodness-of fit measure and thus all models lead to acceptable fits. Fig. 6.2 (top left)
shows the two-dimensional 68% confidence contours for the astrophysical flux parameters
calculated for each model (solid lines). Also shown are the contours one would obtain if
systematic detector uncertainties are not included in the fit (dashed). In the latter case,
di↵erent hadronic interaction models would allow for a very noticeable shift of the con-
tour towards harder spectra with lower normalization. It appears less pronounced when
detector systematics, which e↵ectively reduce the sensitivity of the fit to the di↵erences
between the models, are accounted for. The combined contour is shown in Fig. 6.2 (top
right) as dashed black line. It has been derived via discrete profiling over the di↵erent
results (colors), as discussed in Sec. 5.7.2. Corresponding combined 1d profile likelihood
functions are shown at the bottom (left: normalization, right: spectral index). These
determine the final uncertainties given in eqs. (6.1) and (6.2) and are slightly larger than
the ones given in Tab. 6.1 assuming the HKKMS06 flux prediction [99].

6.2 Comparisons with other IceCube Measurements

Searches for high-energy astrophysical neutrinos have a long history in IceCube (and its
predecessor AMANDA). Traditionally two search strategies are employed. Event selec-
tions focusing on muon neutrinos from the Northern Sky are essentially free of atmo-
spheric muon background since the Earth serves as an impenetrable shield against muons
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Figure 6.11: Measurements of the high energy, astrophysical neutrino flux with the
IceCube detector. High Energy Starting Events (HESE 6-year [204], left) and Northern
Sky Muon Neutrino Track Events (Tracks 8-year [205]).

[206][207][201]. In addition they achieve large e↵ective areas at highest energies, since
muons from neutrino interactions far outside the detection volume can be observed. How-
ever, due to the large background from atmospheric muon neutrinos, the observation of
astrophysical neutrinos is limited to the E & 100 TeV energy range. Event selections
based on cascades instead are sensitive to lower energies and events from all directions
but are statistically limited at highest energies E & 100 TeV [208][209][155]. A related
idea is to search for starting events, i.e. cascades and starting tracks that are contained
within the detection volume. The outer part of the detector is used as a veto against
incoming muon background. The latter strategy provided the first evidence for the ex-
istence of high energy astrophysical neutrinos [5]. The corresponding selection of events
has been named HESE (High Energy Starting Events). It is mainly sensitive in a rather
narrow energy range (⇠ 100 TeV), since atmospheric muon background becomes impor-
tant below Erec ⇠ 60 TeV and statistics is limited at much higher energies. The latest
observed HESE energy spectrum is shown in Fig. 6.11 (left) and contains 82 events ob-
served in 6 years of data taking. Shortly after the initial discovery of the high-energy
neutrino flux in the HESE-channel, a neutrino flux with similar properties was discovered
using muon neutrinos from the Northern Sky [207][201], called “tracks“ hereafter. The
observed spectrum with tracks shown in Fig. 6.11 (right) for the latest years of data tak-
ing (2012-2016). Since the original HESE analysis is limited by its relatively high energy
threshold, attempts have been made to lower it. Two such analyses have been developed
in parallel using two years of data (2010/11): Medium Energy Starting Events (MESE)
[164] (Fig. 6.12 top) and a Cascades [155] (Fig. 6.12 2nd row). The measured spectral
indices fall between the ones measured with HESE and tracks. In addition a combined
analysis of both channels (tracks and starting events) has been performed using the first
two years of data (2010/11). The astrophysical flux was found to be consistent with an
equal mixture of all neutrino flavors, as shown in Fig. 6.12 (bottom right). Searches
for point sources of neutrino emission in the sky or correlations of these events with the
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Figure 6.12: Measurements of the high-energy, astrophysical neutrino flux with the
IceCube detector. Medium Energy Starting Events (MESE 2-year [164], top row),
Cascade Events (Cascades 2-year [155], 2nd row) and a combined fit to several samples
(Global Fit 2-years [199], bottom row). Measurement of flavor composition by [199]
(bottom right).
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galactic center/plane have not obtained significant results and limits were set [62][87].

Fig. 6.13 shows the most recent results concerning the two astrophysical parameters, �
and �, obtained by various IceCube analyses in comparison to the result presented in this
dissertation (blue contour) assuming the astrophysical neutrino flux to behave like a sin-
gle powerlaw. The di↵erent results are from the previous cascade-based flux measurement
[155] (Cascades-10/11, pink contour), the most recent High Energy Starting Event analy-
sis [204] (HESE-6y, green contour), the first Medium Energy Starting Event analysis [164]
(MESE-10/11, black contour) and the most recent measurement using muon neutrino in-
duced track events from the northern sky [205] (tracks-8y, red contour). Our result,
leading in precision, is statistically independent from all previous measurements, except
HESE-6y, either because of a di↵erent data taking period (Cascades-10/11, MESE10/11)
or because a di↵erent event signature (tracks-8y) has been analyzed. While cascade anal-
yses are most sensitive in the few tens of TeV energy region, the track based analysis
observes astrophysical neutrinos at higher energies above 119 TeV [205]. The di↵erent re-
sults shown in Fig. 6.13 range from hard spectra (� = 2.19±0.10) with low normalization
(� = 1.01+0.26

�0.23 c.u.), preferred by track-like events, to very soft spectra (� = 2.92+0.29
�0.33)

with high normalization (� = 2.46 ± 0.8 c.u.) obtained by HESE6y, where we defined
1 c.u. ⌘ 10�18 GeV�1s�1sr�1cm�2. The result obtained in this work falls right in between.
The general trend is, as first pointed out in [155] and [201], that cascade and starting
event based measurements with lower energy thresholds than the track based measure-
ments appear to prefer softer spectra with higher normalization. Hence the question of
consistency arises. We developed a rather general and intuitive method of comparing
independent multivariate measurement results [155] and testing them for consistency4,
which we later refined in collaboration with Sebastian Schoenen (one of the corresponding
authors of [201]) [210]. We would like to make the following two observations:

1. The result of this work is well consistent with previous measurements in a similar
energy range and signature (MESE-10/11 and Cascades-10/11) but significantly
improves upon the achieved precision.

2. The result of this work appears in 2.0��2.3� tension with the result obtained
using muon neutrinos from the northern sky, sensitive at higher energies.

The latter deserves further attention. Fig. 6.14 (top) compares the reconstructed energy
spectrum predicted for our sample, assuming the best-fit obtained with muon neutrinos
is true (purple), to the best-fit obtained in this work (red). The spectra are very similar,
essentially indistinguishable, in the ⇠ 200 TeV to 1 PeV energy range. They are, however,
very di↵erent at energies below 200 TeV, where the muon-neutrino based spectrum sig-
nificantly under-predicts the observed cascade data. At the high energy end, this sample
(unfortunately) is limited by the available data statistics and above reconstructed ener-
gies of 160 TeV (= 105.2 GeV) only 7 events are observed. By themselves, these 7 events
can not provide meaningful constraints on the shape of the spectrum. In particular they
cannot distinguish between hard spectra with small normalization and soft spectra with
large normalization, exactly the direction along which IceCube results appear to di↵er

4Technically, we only test for evidence of inconsistency - or absence thereof.
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Figure 6.13: Top: Comparison of the result obtained here to previous IceCube mea-
surements: ⌫µ-tracks (8y) [205] (red), Cascades (2y) [155] (pink), HESE (6y) [204]
(green) and MESE (2y) [164]. Bottom left: same as top, but excluding hadronic in-
teraction uncertainties. Bottom right: same as bottom left, but excluding detector
systematic uncertainties.

(c.f. Fig. 6.13). This is explored in Fig. 6.14 (bottom left), showing the likelihood as func-
tion of the two relevant parameters (�, �) when only those 7 events are considered. The
high energy end, especially the Glashow Resonance at 6.3 PeV and the non-observation of
corresponding events, requires the normalization to decrease when harder spectral shapes
are tested. Since the low energy region is not included in this calculation, soft spectral
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indices with large normalization are also in agreement with these events. Fig. 6.14 (bot-
tom left) also shows the contours from the track based (dark blue) and previous cascade
based (red) measurements. Independent of the spectral index, the 7 events prefer normal-
izations smaller than the previous measurements. This under-fluctuation, however, is not
significant. Taking into account the uncertainties in the flux measurement using muon

Figure 6.14: Top: comparison of the astrophysical contribution assuming the flux
measured here (red) with contribution expected from best-fit using ⌫µ-tracks [205] (pur-
ple). Bottom: confidence contour obtained in this work if only Erec > 160TeV events
are considered (left). Posterior predictive distribution of number of expected cascades
with Erec > 160,TeV (right).
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neutrinos, we estimate a corresponding posterior predictive probability for observing 7
events or less in this cascade sample with energies larger than 160 TeV of 4%, see Fig.
6.14 (bottom right). We will demonstrate in Sec. 6.6.4 that modeling the astrophysical
neutrino flux with a 2-component powerlaw could potentially alleviate some of the ten-
sion between both measurements. However to what exact extent this would improve the
consistency depends crucially on the ability of the lower energy muon neutrino data to
permit a powerlaw component with soft spectral index and small normalization. Hence
no firm conclusion can be drawn from our analysis (and other IceCube analyses) alone.
One could also be tempted to extend the astrophysical neutrino flux model to be anisotropic
in order to explain the discrepancy and, in particular, introduce a north-south asymmetry.
The track based measurement is only sensitive to the Northern Sky while the astrophys-
ical neutrinos in this sample, despite coming from all directions, are dominated by the
ones from the southern sky. We will show in Sec. 6.6.6 that this only marginally im-
proves the situation due to the increased uncertainties caused by working with a more
complex model. The data obtained in our analysis prefers the fluxes in both hemispheres
to be identical. Finally it might be worth pointing out that the track measurement at
high energies is most sensitive to near-horizontal directions. Hence possible model exten-
sions related to the angular dependence of the astrophysical flux would require additional
fine-tuning beyond a simple north/south-asymmetry.

Consistency with HESE-6y
Another question concerns the compatibility between the results obtained in this work
and the one obtained in the 6-year High Energy Starting Event measurement [204] (green
contour in Fig. 6.13). The preferred spectral index of � = 2.92 in that analysis is
in significant tension with the low energy data observed here. Superficially one might
refer to the large uncertainties in that measurement (large contour) caused by the high-
energy threshold of 60 TeV and correspondingly the small number of events observed.
A rigorous statistical comparison, between both results, however, is complicated due
to the large overlap between both samples. ⇠ 40% of the events in this sample with
reconstructed energies above 60 TeV also contribute to the HESE-6y sample. We will
show in Sec. 6.6.3 that for a broken power-law astrophysical neutrino flux, eq. (5.6), we
find a best-fit break energy of 70 TeV with spectral index �2 = 2.92 for energies larger
than the break energy. This perfectly reconciles both measurements in the energy region
that HESE-6y is sensitive to - as expected. The di↵erence lies in the interpretation. Since
this sample does not provide significant evidence for the broken powerlaw model over the
single powerlaw model, we consider the behavior above 70 TeV as local statistical e↵ect
related to the under-fluctuation in the total number of events with energies larger than
⇠ 160 TeV mentioned above. Of course other interpretations are possible and will be
discussed in greater detail in Sec. 6.6.

6.3 Significance: Rejecting Purely Atmospheric Ori-
gin

In this section we will evaluate the statistical significance of the observed astrophysical
flux in this sample over the atmospheric origin. This is interesting first, because this
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Parameter Calibration Best-Fit

spectral index � - �
norm astro � - �
norm conv �conv - 0.93 ⇥ �HKKMS06

norm prompt �prompt - 15.8⇥�BERSS

norm muon �muon - 1.37
cosmic ray index dev. ��CR 0.00 ± 0.05 0.06
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.08
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 0.98
scattering scale (HI) ✏abs 1.00 ± 0.67 1.08
DOM e�ciency ✏eff 0.99 ± 0.10 1.70

�2 log⇤sat 146.36

Table 6.3: Background-only best-fit values.

dataset is statistically independent from the HESE-2y dataset [5], and second, because
we significantly improved the treatment of systematic uncertainties for example related
to the detector response to light signals. We calculate the significance using the following
likelihood ratio hypothesis test (c.f. Sec. 5.4):

H0 : �astro = 0 against H1 : �astro > 0 (6.3)

This test requires to first fit the background-only hypothesis to the observed data. The
corresponding result is given in Tab. 6.3. Without a contribution from astrophysical
neutrinos, this sample would require a very large prompt atmospheric neutrino flux of
�prompt = 15.8 · �BERSS, more than one order of magnitude larger than the nominal flux
prediction from [102], and in violation of several upper-limits obtained by IceCube in
the past, e.g. [164][201]. Additionally, in order to improve the model fit in the southern
sky, increased bulk (↵BI

scat = 1.08) and hole (↵HI
scat = 1.70) ice scattering would be neces-

sary, e↵ectively reducing the impact of the atmospheric neutrino self-veto e↵ect. Still,
the background-only model does not describe the data, especially at high energies in the
southern sky, as shown in Fig. 6.15. In the northern sky (Fig. 6.15, second row, right)
the mismatch is less obvious and appears mostly at intermediate energies (< 60 TeV)
because the prompt atmospheric neutrino spectrum is slightly softer (�prompt ⇠ 2.7) than
the preferred value for the astrophysical component of �astro ⇠ 2.5. Overall, we find a
observed test-statistic value of �2 log ⇤ = 81.3. As discussed in Sec. 5.4, calculating the
corresponding p-value requires knowledge of the relevant distribution of the test-statistic.
Wilk’s theorem [191] does not apply for two reasons. First, the parameter of interest
is tested at the boundary of its parameter space (�astro = 0) and second, the spectral
index � constitutes a free parameter that is undefined, if the null-hypothesis was true.
Thus, the distribution of the test-statistic is unknown and needs to be estimated from
simulating toy-experiments. This was done assuming that the values given in Tab. 6.3
represent the true values realized in nature. Fig. 6.16 (top left) shows the resulting
distribution obtained from 4200 toy experiments (red histogram) compared to the ob-
served value (vertical black line). Many orders of magnitude more toy-experiments would
be needed to reliably estimate the tail-area probability of observing �2 log ⇤ > 81 (red
shaded area). The black dashed line shows one possible, ad-hoc extrapolation of our
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Figure 6.15: Best-fit distributions assuming no contribution from astrophysical neu-
trinos �astro = 0. Cascades from all directions (top left), Cascades with 0.6 < cos ✓rec
(top right), Cascades with 0.2 < cos ✓rec  0.6 (middle left), Cascades with cos ✓rec 
0.2 (middle right). Energy spectrum of starting tracks (3rd row, left). Zenith distribu-
tion of cascades for Erec > 10TeV (3rd row, right), Zenith distribution of cascades for
Erec > 25TeV (bottom left) and for cascades with Erec > 60TeV (bottom left).
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simulations. We estimate a tail-area probability of ⇠ 10�18 with large uncertainties due
to the mathematically unjustifiable extrapolation and the occurrence of multiple minima
in the likelihood function of individual toy-MC datasets which can cause the fit to con-
verge to wrong solutions in individual cases. Clearly, an independent confirmation of this
estimate is needed.
Notice that if the spectral index � was known ahead of the experiment, it would not
constitute a free parameter that is undefined under the null-hypothesis. Instead it would
just be one constant. In this case Wilk’s theorem is still not applicable, because of the
parameter boundary (�astro = 0). However, a theorem derived by Cherno↵ [193] is. For
our case with � = c (c being some constant) it follows asymptotically

�2 log ⇤ (x)
d�! f⇠ (⇠)

f⇠ (⇠) =
1

2
⇥ I (⇠) + �2

1
(⇠)

I (⇠) =

(
1 ⇠ = 0

0 ⇠ > 0

(6.4)

We confirmed that eq. (6.4) applies to our measurements by means of simulation (� 2
{2.0, 2.5, 3.0}). The result is shown in Fig. 6.16 (top right). For spectral indices that
resemble the spectral shape of the prompt atmospheric flux ⇠ 2.7 the prediction from eq.
(6.4) matches our simulation well. For � = 2.0 the asymptotic expectation over-predicts
the tail behavior, which for our purpose appears conservative.
We can now relate our search for a non-zero astrophysical flux with free, variable spectral
index to a search with fixed spectral index (see above) thanks to a result by Davies [211].
The idea is to bound the p-value from above by calculating the local p-value expected
from a search with fixed spectral index and then add a correction for the so-called look
elsewhere e↵ect [212] that changes the local p-value into a global one. The procedure is
well described in [212] and further advocated by di↵erent authors in [213] and [214]. The
global p-value is approximated by

p =
P (�2

1
> ⇠obs)

2
+ E[U(c0)|H0] ⇥ exp

✓
�⇠obs � c0

2

◆
(6.5)

where E[U(c0)|H0] is the expected number of up-crossings U(c0) of the corresponding
1

2
�2

1
+ � (0)-random process [213], assuming H0 is true, and c0 is an arbitrary threshold

with c0 << ⇠obs. Since c0 can be chosen small (we use c0 = 0.5, suggested in [212]), a
relatively small set of toy-experiments is su�cient to accurately estimate E[U(c0)|H0]. We
choose a search region 1.0 < � < 4.0 and implemented the numerical algorithm discussed
in [213] using a grid with 100 evaluation points. Despite being vastly more e�cient
than trying to “brute-force“ O(1019) toy-fits, the method is also inherently more stable
against the occurrence of multiple minima due to the evaluation on a grid that reduces
the number of dimensions, the numerical minimization is performed in. The procedure is
demonstrated in Fig. 6.16 (2nd row, left) for a few randomly selected toy-datasets, where
up-crossings are marked with stars. Fig. 6.16 (2nd row, right) shows the distribution of
the number of up-crossings of the test-statistic above c0 = 0.5 that we obtained from a
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Figure 6.16: Calculation of significance over purely atmospheric origin: test-statistic
�2 log⇤ distribution from toy experiments without signal (top left). test-statistic
�2 log⇤ distribution from toy experiments for fixed spectral indices (top right). Ex-
amples of up-crossings of LRT-random process (middle left). Distribution of number of
up-crossings (middle right). Test-statistic �2 log⇤ distribution from toy experiments
with signal (bottom).

sample of 252 toy experiments. This yields E[U(c0 = 0.5)|H0] = 0.39. Finally, using eq.
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(6.5), we find a global p-value of

p = 1.2 · 10�18 (6.6)

which compares well to the previous estimate. The result corresponds to a trials factor
of 12.4 relative to a search with fixed, pre-specified value for the spectral index �.

The final result is a preference for a single powerlaw astrophysical neutrino flux (with a-
priori unknown intensity and spectral shape) over purely atmospheric neutrino production
corresponding to a significance of 8.7�, obtained with a dataset that is statistically
independent from the initial evidence reported in [5], and taking into account all relevant
systematic uncertainties. Without the inclusion of systematic uncertainties, described
in 5.7, the significance would of course be larger at 9.9�5. We e↵ectively more than
doubled the significance compared to [5], despite only doubling the total live time of the
experiment.

Lastly, we checked whether the high significance appears unusual in a statistical sense.
We re-calculated the test-statistic distribution assuming that the true values of our model,
including an astrophysical flux component, are given by Tab. 6.1. The resulting distri-
bution of the test-statistic values (�2 log ⇤) is shown in Fig. 6.16 (bottom right). In
particular we find that 44% of the replicated toy-experiments would yield a more signif-
icant result than our actually observed dataset. From our simulations we derive a 68%
central range for the predicted significance of 7.3��9.8� and thus our result appears well
consistent with expectations.

6.4 Energy Range

The “energy range“ of this measurement serves an important purpose in the interpretation
of atmospheric and astrophysical flux measurements. If no signal is observed and therefore
upper-limits are obtained, the energy range conveys additional information about the
energies at which the corresponding flux with intensity above the limit would be excluded.
Obviously, if for example from theory one expects the flux to be present also below the
detection threshold energy of the detector, the upper-limit does not apply to that energy
region. Similar considerations apply if a flux is observed. Models often extend beyond
the detection sensitivity of the experiment, while observations can for obvious reasons
only be performed above threshold. While this reasoning appears immediately intuitive,
how to formalize it is less clear. Various definitions and methods have been devised and
applied over time within the IceCube Collaboration, for example the di↵erent approaches
discussed in [200][164][205]. When applied to this work the question to answer is: within
what range in neutrino energy does the data support the existence of a single-powerlaw
astrophysical neutrino flux? We will address this question by first deriving the energy
range using the definition put forward in [205] before introducing yet one more approach.
In Sec. 6.3 we discussed the calculation of the significance of the observed astrophysical

5We did not repeat all toy-simulations, since we do not anticipate any change in the distributions
of the test-statistic. We only calculated the observed TS-value corresponding to the nominal detector
except for a (fixed) Hole-Ice scattering length of 30 cm.
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Figure 6.17: Calculation of valid energy range: likelihood contribution in each bin
(top left). summed likelihood contribution from bins with E0 > E (top right). Middle:
Cascade (left) and starting track (right) energy spectra assuming zero contribution from
prompt atmospheric and astrophysical neutrinos. Bottom: construction of lower-limit
on logarithmic range of flux (see text).
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flux over the atmospheric background only hypothesis, especially the central role of the
test-statistic ⇠ = �2 log ⇤. The idea behind the construction of the energy range is
to estimate a range of neutrino energies that contributes a large fraction (90%) to the
absolute value of ⇠. A slightly modified definition for ⇠ is used, that corresponds to a
hypothesis test with known atmospheric prompt flux (equal to its best-fit value). The
log-likelihood function, eq. (5.18), and thus the test statistic ⇠, is defined as a sum
over all observable bins. One can therefore easily identify the contribution to ⇠ from
each individual observable bin i, denoted ⇠i. Each observable bin also has a non-zero
contribution from the astrophysical neutrino flux. Assuming the best-fit astrophysical
neutrino flux and using the standard MC-simulations it is straightforward to calculate
the normalized distribution of neutrino energies, f (E⌫ | i, �, �), that contribute to said
observable bin. One can then assign a weight ⇠i to this distribution. The weighed sum of
all this distributions over all observable bins then could be interpreted as the distribution
of the test-statistic ⇠ in neutrino energy space. If we assume K neutrino energy bins, this
reads:

⇠̃k
�
Ek

⌫

�
=

Z

�Ek
⌫

X

i

f (E⌫ | i, �, �) ⇥ ⇠i (6.7)

A detailed explanation of this method can be found in [215] (Appendix G). The result of
this construction when applied to this dataset is shown in Fig. 6.17 (top left, green). One
can clearly see that he bulk of the total test-statistic ⇠ is estimated to stem from between
few tens of TeV to few hundreds of TeV . Isolated peaks are visible at highest energies,
corresponding to individual events that contribute strongly to the test-statistic. This
strong contribution from individual events shows that highly energetic neutrinos provide
a lot of evidence for an astrophysical origin. However, the are not very informative about
the spectral properties of this flux, due to their small numbers (c.f. Sec. 6.2). The sum
of the contributions from neutrino energy bins above some threshold energy E⌫ is shown
in Fig. 6.17 (top right, green). Using this construction, we estimate that 90% of the total
test-statistic ⇠ = �2 log ⇤ stem from neutrino energies ranging from

Elow = 3.9 TeV to Ehigh = 1.1 PeV. (6.8)

Fig. 6.17 (2nd row) shows the observable distributions for the best-fit in a scenario
that has no contribution from either prompt atmospheric or astrophysical neutrinos, for
cascade-like events from all directions (left) and starting tracks (right). They should be
compared to their best-fit counterparts that include an astrophysical component (Fig.
6.1 and Fig. 6.3). One notices that in the former scenario, the fit adjusts the systematics
parameters in order to match the statistically dominant cascade sample at low energies
(E < 10 TeV). This adjustment, while improving the overall fit-quality, comes at the
expense of a reduced fit in the starting track sample. Thus, for the bins below 10 TeV
the main contribution to ⇠ is actually obtained from the starting track control sample.
However, as shown in Fig. 6.3 (bottom left), the contribution of astrophysical neutrinos,
estimated in the latter scenario, is negligible compared to the conventional background.
For this reason it does not appear sensible to “assign“ the corresponding contribution to
⇠ to astrophysical neutrinos and to then estimate the neutrino energy range using the
prescription described above, including eq. (6.7) - at least for the dataset obtained in
this work.
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Because of this conceptual di�culty, we devised an alternative calculation. We attempt
to answer the following question: what are the minimum and maximum energies (Emin

⌫

and Emax
⌫ ) corresponding to the 68% (90%) C.L. lower bound on the logarithmic width

of the corresponding range of neutrino energies � log
10

(E⌫/GeV), assuming that the
astrophysical neutrino flux behaves as a single power law within a finite range? In other
words, what is the minimal logarithmic range, one could limit the flux with, that remains
consistent with the data (at a certain confidence level)? Thus we need to extent the
unbroken, single power law baseline model with two parameters to describe the possibility
of a finite range, i.e. log

10
(Emin

⌫ /GeV) and log
10

(Emax
⌫ /GeV) corresponding to the “single

power law box“ model from eq. (5.9). We define:

� log
10

(E⌫/GeV) = log
10

(Emax
⌫ /GeV) � log

10
(Emin

⌫ /GeV) (6.9)

We discussed methods of interval construction in Sec. 5.4. Here we would like to find a
68% (90%) C.L. lower limit on � log

10
(E⌫/GeV), i.e. construct a one-sided interval. This

can be done by inverting the following hypothesis test:

H0 : � log
10

(E⌫/GeV) = c0 against H1 : � log
10

(E⌫/GeV) > c0 (6.10)

Fig. 6.17 (bottom left) shows the two-dimensional profile-likelihood function for the
two extra parameters, where we treated the remaining astrophysical parameters, � and
�, as additional nuisance parameters. Calculating the observed test-statistic (�2 log ⇤)
value corresponding to the test in eq. (6.10) requires to minimize that function along
the axis, where � log

10
(E⌫/GeV) is constant (light blue lines). The corresponding path

is shown as the solid6 red line. The resulting one-dimensional profile likelihood func-
tion for � log

10
(E⌫/GeV) is shown in Fig. 6.17 (bottom right). Since this is a one-

sided problem, we invoke Cherno↵ [193], i.e. use eq. (5.27) and find critical values
of �2 log ⇤ = 0.23 (�2 log ⇤ = 1.65) for 68% (90%) C.L. lower limits. The excluded
regions of � log

10
(E⌫/GeV) are marked as red shaded regions, where the correspond-

ing limits are shown as red star (� log
10

(E⌫/GeV) = 2.1 at 68% C.L.) and red dot
(� log

10
(E⌫/GeV) = 2.4 at 90% C.L.). The 68% C.L. lower limit correspond to a range

of

Elow = 9.1 TeV to Ehigh = 2.4 PeV (6.11)

while for the 90% C.L. lower limit we find

Elow = 14 TeV to Ehigh = 2.0 PeV (6.12)

The upper ends derived in this way are higher than the one found using the previous
approach, eq. (6.8). This is because we can be reasonably certain that there exists an
astrophysical flux around 2 PeV, given that we have found one event with a reconstructed
energy at that value. At the same time we found the lower ends to move to higher energies
as well. This is probably because, using the new method, we treated the astrophysical
parameters of interest (�, �) as unknown. Finally we should mention that in our con-
struction we did not treat the detector-related systematics parameters as unknown but

6This is actually a non-trivial problem. Straight application of our standard, gradient aware minimizer
would have yielded the red dotted (wrong) solution. The minimizer follows the gradient and misses the
global minimum.
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kept them fixed at their nominal values (except for the scattering length in IceCube’s
drill holes, where we use the best-fit value of 30 cm) to ease the computations. Note
that our approach is similar in spirit to that of [164] but the implementation, statistical
justification and thus the interpretation are di↵erent.

6.5 Prompt Atmospheric Neutrinos

Assuming the astrophysical neutrino flux to follow an isotropic, single powerlaw this
analysis finds no evidence for a prompt atmospheric neutrino flux component in the
observed spectrum. The best-fit prompt normalization is vanishingly small, �prompt =
0 · �BERSS. We are now interested in deriving an upper-limit on the strength of the
flux above which this dataset would disfavor its existence. Fig. 6.18 shows the profile
likelihood function of the normalization parameter �prompt for the prompt atmospheric
neutrinos flux (thick black line). It follows from Wilk’s theorem [191] that the 90% C.L.
upper-limit �UL

prompt is given by the (largest) parameter value �0

prompt at which the observed
log-likelihood ratio for testing H0 : �prompt = �0

prompt against H1 : �prompt 6= �0

prompt

Figure 6.18: Calculation of 90% upper-limit on prompt atmospheric neutrino flux.
Observed likelihood function including all systematic uncertainties (black) compared to
Asimov expectation (red). Di↵erent assumptions about detector response (dashed).
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attains the value 2 log ⇤ = 2.717. We find a 90% C.L. upper-limit that is 4.8 times larger
than the benchmark prediction from the BERSS model [102].

�UL90
prompt = 4.8 · �BERSS. (6.13)

Tab. 6.4 details the values of all other fit-parameters if the prompt normalization is kept
fixed at its upper limit. As expected, in this scenario we would find a slightly harder
spectral index of � = 2.47 with lower normalization of � = 1.36 c.u. compared to the
nominal fit result. We also notice a slight increase in hole-ice scattering in this scenario.
To confirm that this solution �UL90

prompt = 4.8 · �BERSS indeed corresponds to 90% C.L. as
inferred from application of Wilks’ theorem [191], we calculated the distribution of the
relevant test-statistic from toy-experiments assuming the values from Tab. 6.4 as truth.
The resulting distribution is shown in Fig. 6.19 and confirms our asymptotic calculation.
In particular we determine a confidence level of (90.6 ± 0.5)%, where the uncertainty is
due to the finite size of our simulation (N = 4200).
Is our result consistent with expectations? Fig. 6.18 shows the median expected prompt
upper limit that one would derive from the profile likelihood function calculated based
on the Asimov dataset [192]. This assumes the true value of the prompt normaliza-
tion to be zero and is called the (median) sensitivity of the experiment. We obtain
�UL90exp

prompt = 5.9 · �BERSS which is 21% larger than the upper-limit obtained for the real
dataset (eq. (6.13)). Setting limits far below the experimental sensitivity can be prob-
lematic and be indicative of un-modeled systematic uncertainties or rare fluctuations in
the data. Whatever the reason in those cases, the credibility of the result might be
questioned [216]. To better understand our result, we studied the distribution of 90%
upper-limits, one might have observed, had the data been di↵erent. We generate arti-
ficial toy datasets and for each calculate the 90% upper limit. In particular we assume

7Technically, we are not calculating an upper-limit, but rather a two-sided confidence interval that is
bounded from below (�prompt = 0). If we had pre-registered, that we want to “measure“ an upper-limit,
the result would be more restrictive - corresponding to 2 log⇤ = 1.65.

Figure 6.19: Left: Distribution of the likelihood-ratio test-statistic assuming a prompt
flux at the 90% upper-limit obtained with toy experiments (red) compared to Wilk’s
expectation (black). Right: Distribution of best-fit values for prompt normalization
assuming a prompt flux at the 90% upper-limit.

172



Chapter 6. Results

Parameter Calibration Result at �90%

BERSS

spectral index � - 2.47
norm astro � - 1.36 c.u.
norm conv �conv - 1.05 ⇥ �HKKMS06

norm prompt �prompt - 4.8⇥�BERSS

norm muon �muon - 1.41
cosmic ray index dev. ��CR 0.00 ± 0.05 0.05
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 1.00
scattering scale (HI) ✏abs 1.00 ± 0.67 1.71
DOM e�ciency ✏eff 0.99 ± 0.10 1.02

Table 6.4: Value for all fit-parameters at the 90% upper limit on the prompt flux. (⇤)
nuisance parameters are anti-correlated with ⇢ = �0.1.

the true value of the prompt atmospheric flux normalization to be zero, corresponding
to our best-fit astrophysical flux measurement, Tab. 6.1. The result is shown in Fig.
6.20 (top left) as the blue histogram and covers a rather wide range of possible prompt
upper-limits. 68% (95%) of the replicated upper-limits lie within a central interval of
�prompt/�BERSS 2 [3.3, 10.2] (�prompt/�BERSS 2 [2.1, 14.2]). These intervals are visual-
ized by the green shaded areas. In particular there is a 36% probability of obtaining a
prompt-limit that is more constraining than the one found in this work (eq. (6.13), black
vertical line). Thus, our result does not appear unexpected and the small di↵erence, when
compared to the median sensitivity, is easily explained by the estimated variance.
From our simulations we can also determine the median 90% upper-limit (green vertical
line) which is essentially identical to the asymptotic expectation from the Asimov dataset
(red vertical line). Fig. 6.20 also shows the replicated profile-likelihood functions obtained
from the toy-experiments (2nd row, left). The Asimov-approximation to the median sen-
sitivity (red) works well, i.e. it overlaps with the values obtained from toy-experiments
(green), if values above ⇠ 4 · �BERSS are tested. Some di↵erence is observed for smaller
values and interpreted as a boundary e↵ect that invalidates asymptotic arguments. We
have discussed the impact of the same boundary (�prompt = 0) on the expected precision
of the astrophysical flux measurement in Sec. 6. The same boundary explains the asym-
metric shape of the distribution of the replicated 90% upper-limits (Fig. 6.20, top left).
Fig. 6.20 (2nd row, right) shows the distribution of the best-fit values for the atmospheric
prompt normalization and its pronounced peak at the boundary. Obviously, there exists a
correlation between the prompt best-fit value and the corresponding upper-limit. Weaker
limits are obtained if the best-fit normalization increases. This is visualized well in Fig.
6.20 (top right). It is plausible to assume that if we were to extent to parameter space to
negative values, the distribution of upper-limits would show a heavier tail towards smaller
values and thus become more symmetric.

Impact of Systematic Uncertainties
We have found the prompt upper-limit to be quite susceptible to systematic uncertainties.
Standard assumptions about the detector response, in particular a hole-ice scattering
length of 50 cm would yield a very strong limit of 1.4 · �BERSS. The corresponding
profile-likelihood function is shown in Fig. 6.18 (thin black line, dotted) and increases
nearly linearly. Increasing the amount of scattering in the drill holes (�scat = 30 cm)
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Figure 6.20: top left: Sampling distribution of 90% prompt upper-limit assuming no
prompt flux exists in nature (sensitivity). Top right: Correlation of 90% prompt upper-
limit with best-fit prompt flux normalization. Middle left: Sampling uncertainties
on profile likelihood function (green) compared to median expectation from Asimov
method (red). Middle Right: Sampling distribution of fitted prompt normalizations.
Bottom: Behavior of nuisance parameters as function of inferred prompt normalization.
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Figure 6.21: Impact of systematic uncertainties on prompt flux upper-limit: Left:
detector-related systematics. Right: hadronic interaction models

weakens the limit to 2.2 · �BERSS (thin black line, dashed), which is still roughly a factor
2 below our final result, eq. (6.13). Adjusting all nuisance parameters to their best-fit
values (Tab. 6.1) further weakens the limit to 4.1 ·�BERSS (thin black line, dash-dotted).
The remaining di↵erence is due to the fact that in the final fit, the nuisance parameters
are allowed to vary within the constraints provided by this dataset in combination with
the auxiliary data. Fig. 6.20 (bottom left) shows the conditional best-fit values for the
nuisance parameters as function of increasing normalization of the prompt atmospheric
neutrino flux. No single parameter appears to dominate the weakening of the limit and
all appear to contribute. This behavior is expected, since it can be reproduced on the
Asimov dataset (median expectation), see Fig. 6.20 (bottom right).
It is still insightful to rank the systematics parameter by their individual influence on
the prompt limit. Fig. 6.21 (left) shows the profile-likelihood functions for scenarios, in
which a (fix) hole-ice scattering length of 30 cm is assumed and one additional nuisance
parameter is allowed to vary. This shows that, if judged by their individual impact, the
strongest weakening of the limit would be due to uncertainties in bulk-ice scattering. As
discussed in Sec. 4.1.2 enhancing bulk-ice scattering biases the reconstructed declination
towards the southern hemisphere and thus weakens the observable self-veto e↵ect, and in
e↵ect allows for a larger prompt flux.
Finally we studied the e↵ect of hadronic interaction models that can alter the shape of the
conventional atmospheric neutrino background. We re-computed the prompt-limit for the
di↵erent hadronic interaction models, discussed in Sec. 5.7. This is shown in Fig. 6.21
(right), where solid lines are used for the analysis with all systematics being variable, and
dashed lines show the results, obtained when all systematics parameters are kept fixed
at their nominal values (except for the hole-ice, where we again assume �scat = 30 cm.).
Once all other systematics are accounted for, the di↵erent hadronic interaction models
only have a minor e↵ect on the limit. In particular, the most conservative limit is given
by the default conventional model (HKKMS06) with �UL90

prompt = 4.8 · �BERSS.

Comparison to previous IceCube Measurements
IceCube has attempted to measure the flux from prompt atmospheric neutrinos in the
past. However no analysis has observed a corresponding non-zero contribution to the data
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sample. The most recent 90% C. L. upper-limit obtained with a cascade dominated sam-
ple has been reported in [164] (Medium Energy Starting Events): �prompt < 1.52 ·�ERS

8.
A stronger limit has been reported from a measurement using muon neutrinos from the
northern sky, �prompt < 1.06 ·�ERS [201]. This latter limit is based on a di↵erent method
than the one presented here. It is conservative in the sense that the method is guaranteed
to over-cover (coverage larger than 90%). Using the same method applied in this work,
a stronger limit would have been reported: �prompt < 0.5 · �ERS, which is a factor ⇠ 3
smaller than the reported (median) sensitivity of 1.5·�ERS [201]. All limits (including the
one reported here) are model dependent in that they assume an isotropic, single power
law astrophysical neutrino flux (background for prompt atmospheric neutrinos). Further-
more the experimental (median) sensitivity depends on the assumed true values for the
astrophysical neutrino flux. Obviously a better sensitivity is obtained for a hard astro-
physical neutrino flux with small normalization than a soft astrophysical neutrino flux
with larger normalization. The former predicts less astrophysical background neutrinos
at lower energies, where the analyses are most sensitive to a possible signature related to
prompt atmospheric neutrinos. According to [215] the (median) sensitivity of the muon
neutrino measurement [201] as derived from the Asimov dataset would be weaker than
⇠ 4 · �ERS if a spectral index of �astro = 2.5 with normalization �astro = 1.7 was as-
sumed (Fig 12.2 in [215]) - similar to the values preferred by the measurement reported
here. This weakening is expected. As the astrophysical spectral index approaches the
shape of the prompt flux ⇠ 2.7 both components become essentially indistinguishable for
the muon neutrino based analysis, up to small di↵erences at highest energies to due to
CR knee that soften the prompt flux at highest energies. Cascade and Starting Event
based measurements are less a↵ected in this scenario due to the atmospheric self-veto
suppression of prompt neutrinos in the southern sky. This extra signature, however, is
lost if one abandons the assumption that the astrophysical neutrino flux is isotropic and,
in particular, introduces a north-south asymmetry (c.f. Sec. 6.6.6). In order to compare
these limits to the one reported here, we first have to convert our limit, which is given
in units of the BERSS [102] model, into units of the ERS model [101]. In our analysis
we find that both models have essentially identical spectral shapes and only di↵er in
normalization, with the letter predicting a larger flux �ERS ⇡ 2.82 · �BERSS. Thus our
90% C.L. upper-limit, eq. (6.13), becomes

�prompt < 1.7 · �ERS (6.14)

which is larger than both previous results. The corresponding (median) sensitivity be-
comes 2.1 · �ERS. Given the discussions above, one can easily understand why this limit
is weaker than the one obtained using muon neutrinos from the northern sky [201]. The
reason is the preference for a harder astrophysical flux with lower normalization (c.f. Sec.
6.2). If instead both analyses assume an astrophysical flux similar to the one preferred
in this work, the sensitivity obtained here would be better by a factor of 2 � 3, hing-
ing on the assumption that the astrophysical neutrino flux is symmetric with respect
to both hemispheres (c.f. Sec. 6.6.6). Assuming an astrophysical neutrino flux with
properties given by [201] (� = 2.13, � = 0.9 c.u.) the (median) sensitivity of this work
would change to 4.1 ·�BERSS (1.5 ·�ERS), as determined from the corresponding Asimov

8The BERSS [102] prompt flux prediction is an updated calculation compared to the ERS [101] prompt
prediction from the same authors. Both calculations derive very similar spectra and di↵er mostly in the
predicted normalization. See Sec. 1.7 for more details.
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dataset. Coincidentally, this is is identical to the sensitivity reported in [201]. Sensitivity
considerations aside, both measurements are complementary, because, as just discussed,
they have a di↵erent dependence on systematic uncertainties and model assumptions.
A comparison to the result obtained with Medium Energy Starting Events [164] is non-
trivial because of the lack of information about the experimental sensitivity.

6.6 Beyond the Single Powerlaw

In this chapter we study possible alternative, more complex astrophysical neutrino flux
parametrizations (c.f. Sec. 5.1) and compare them to the baseline single-powerlaw model.
Fig. 6.22 shows the best-fit spectra according to the single powerlaw model (top left),
the single powerlaw with exponential cuto↵ (top right), the log-parabolic powerlaw (bot-
tom left) and the broken powerlaw (bottom right) for all cascade-like events. We do
not separately show the spectrum obtained assuming a 2-component powerlaw, since,
as we will show in Sec. 6.6.4, its best-fit is identical with the single-powerlaw. The

Figure 6.22: Comparison between best-fit reconstructed energy spectra according to
di↵erent astrophysical flux models: single powerlaw (top left), single powerlaw with exp.
cuto↵ (top right), log-parabolic powerlaw (bottom left) and broken powerlaw (bottom
right). Cascade events with all directions.

177



Chapter 6. Results

Figure 6.23: Comparison between best-fit reconstructed energy spectra according to
di↵erent astrophysical flux models: single powerlaw (top left), single powerlaw with exp.
cuto↵ (top right), log-parabolic powerlaw (bottom left) and broken powerlaw (bottom
right). Cascade events with near vertical directions 0.6 < cos ✓rec.

three best-fit alternative models all share one qualitative, general trend: compared to the
single-powerlaw model they predict less astrophysical neutrinos at lower energies, more
astrophysical neutrinos at intermediate energies (several tens of TeV) and finally less as-
trophysical neutrinos at highest energies (few hundreds of TeV). These shape di↵erences
are most noticeable for near vertically down-going trajectories due to the absence of earth
absorption e↵ects at high energies and less atmospheric backgrounds at lower energies.
The corresponding spectra, in the same order as before, are shown in Fig. 6.23, while Figs.
6.24 and 6.25 show them for more horizontally, down-going events and up-going events,
respectively. We will discuss the results for each model separately and in more detail in
their respective sections: Sec. 6.6.1, (single powerlaw with exponential cuto↵), Sec. 6.6.2
(log-parabolic powerlaw), Sec 6.6.3 (broken powerlaw) and Sec 6.6.4 (2-component pow-
erlaw). In particular we will study to what extent this dataset does (or does not) prefer
each of the more complex models over the single powerlaw baseline assumption by means
of separate likelihood ratio tests. Methodically this is similar to testing for an astrophys-
ical single powerlaw flux over the atmospheric background only hypothesis, as discussed
in Sec. 6.3. The result is summarized in Tab. 6.5. The smallest p-value (p = 0.05)
and thus the highest significance (1.6�) is found for the log-parabolic powerlaw model.
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Figure 6.24: Comparison between best-fit reconstructed energy spectra according to
di↵erent astrophysical flux models: single powerlaw (top left), single powerlaw with exp.
cuto↵ (top right), log-parabolic powerlaw (bottom left) and broken powerlaw (bottom
right). Cascade events with down-going directions 0.2 < cos ✓rec  0.6.

The broken powerlaw (�2 log ⇤ = 4.6) fits the data slightly better than the log-parabolic
powerlaw (�2 log ⇤ = 3.1) when both are compared to the single powerlaw. However
due its larger flexibility (one additional parameter) we obtain a smaller significance for
the broken powerlaw. While all models describe the data well, none of models provides a
significantly better description of the data than the single powerlaw. Thus in this work
we did not find any evidence for additional complexity in the astrophysical neutrino flux
beyond the single powerlaw.
Finally, it is worth mentioning that the significances given in Tab. 6.5 do not account for
the multiple comparisons problem, i.e. the fact that we have tested more than just one
model. A simple Bonferroni-adjustment of the p-values is su�cient to control the total
false discovery rate [217]. One would either raise the discovery threshold or equivalently
multiply each individual p-value by the number of tested hypotheses. For example the
adjusted p-value for the log-parabolic powerlaw would read pcorr = 0.2 (0.8�).
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Figure 6.25: Comparison between best-fit reconstructed energy spectra according to
di↵erent astrophysical flux models: single powerlaw (top left), single powerlaw with exp.
cuto↵ (top right), log-parabolic powerlaw (bottom left) and broken powerlaw (bottom
right). Cascade events from northern sky cos ✓rec  0.2.

Flux Model (⌫astro) Parameters �2 log⇤ p-value significance [�]

single powerlaw 2 - - -
+ exp. cuto↵ 3 2.0 0.13 1.1
+ log-parabolic shape 3 3.1 0.05 1.6
+ spectral break 4 4.6 0.11 1.2
+ extra component 4 0.0 1.00 0.0

Table 6.5: Significance of alternative, mode complex astrophysical flux models over
single power-law model as determined from toy experiments (see text).

6.6.1 The Exponential Cuto↵

The best-fit values for the parameters of the single powerlaw astrophysical neutrino flux
with exponential high energy cuto↵ are given in Tab. 6.6. We find a cuto↵-energy of
log

10
(Ecut/GeV) = 6.14+0.66

�0.40, i.e. 1.4 PeV and large uncertainties. Compared to the single,
unbroken powerlaw the spectral index hardens to � = 2.42+0.11

�0.14 and we find an increased
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Parameter Calibration Result ±1�

cuto↵ log10(Ecut/GeV) - (6.14+0.66
�0.40)

spectral index � - 2.42+0.11
�0.14

norm astro � - (1.74+0.32
�0.28) c.u.

norm conv �conv - (1.03+0.13
�0.11) ⇥ �HKKMS06

norm prompt �prompt - < 2.57 ⇥ �BERSS

norm muon �muon - 1.42 ± 0.04
cosmic ray index dev. ��CR 0.00 ± 0.05 0.04 ± 0.03
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.03 ± 0.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 0.99 ± 0.04
scattering scale (HI) ✏abs 1.00 ± 0.67 1.68 ± 0.18
DOM e�ciency ✏eff 0.99 ± 0.10 1.04+0.08

�0.07

�2 log⇤sat 62.98

Table 6.6: Best-fit values for assuming the astrophysical neutrino flux to follow a
single-powerlaw with exponential cuto↵. (⇤) nuisance parameters are anti-correlated
with ⇢ = �0.1

normalization at 100 TeV neutrino energy of � = 1.74+0.32
�0.28 GeV�1cm�2s�1sr�1. The in-

creased uncertainties in each parameter are due to correlations with the cuto↵-energy.
Background-flux and detector-related nuisance parameters remain essentially unchanged.
Fig. 6.26 (top) shows the two-dimensional confidence contours for the location of the
high energy cuto↵ in the spectrum and the remaining two parameters: spectral index �
(black) and normalization � (red). As the cuto↵-energy decreases, the data prefers harder
spectral indices. The two-dimensional confidence contour for the powerlaw parameters
(� and �) is shown in Fig. 6.26 (bottom left) and appears significantly larger than the
one corresponding to the unbroken, single powerlaw from before (dashed, black line, c.f.
Fig. 6.6). This has interesting implications. It is very obvious that the possibility of a
high energy cuto↵ increases uncertainties in possible flux predictions at high energies. It
might, however, be considered less obvious by some, that this also increases uncertainties
in flux predictions at lowest energies - as we just demonstrated in Fig. 6.26.
We compared this model to the single, unbroken powerlaw with the following likelihood
ratio test:

H0 : powerlaww/o cuto↵ (00 log
10

(Ecut/GeV ) = 100)

against H1 : powerlaw w/ cuto↵ (00 log
10

(Ecut/GeV ) < 100)
(6.15)

The corresponding distribution of the test-statistic �2 log ⇤ is shown in Fig. 6.26 (bottom
right) and has been determined from simulating replicated toy-experiments assuming the
best-fit values from Tab. 6.1. In 14% of the cases we find a small preference for the
existence of a high energy cuto↵ that is equal or larger than the one observed (�2 log ⇤ �
2.0). The shape of the test-statistic does not appear to follow the distribution that one
might naively have expected (at least for large sample sizes). Technically, the two models
are not nested, since the alternative model does not reduce to the null model within its
parameter space (infinity is not a real number). Ignoring technicalities, one might extend
the real line to include +1 as a boundary point and potentially consider a theorem by
Cherno↵ [193]. In this case one would expect the sampling distribution to approach eq.
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Figure 6.26: Top: confidence contours for cuto↵ energy and normalization in red
(spectral index in black). Bottom left: confidence contour for normalization and spec-
tral index. Bottom right: test-statistic distribution of likelihood ratio to calculate
significance w.r.t to single power-law without cuto↵.

(6.4) for large sample sizes. While our simulated test-statistic distribution does show signs
of boundary behavior, i.e. it is strongly peaked at/near �2 log ⇤ = 0, its tail behavior
deviates from eq. (6.4). One should keep in mind, however, that information about
the cuto↵ parameter is extracted at highest energies where data data is sparse and, in
particular, asymptotic considerations do not apply.
Finally it is worth having a closer look at the impact of the Glashow Resonance (c.f. Sec.
1.8) at E⌫ = 6.3 PeV and the non-observation thereof on the marginal preference of the
spectral cuto↵ discussed above. This can be illuminated by replacing the exponential
cuto↵ by an instantaneous cuto↵ beyond which the flux vanishes (�(E) = 0, E > Ecut).
Fig. 6.27 (black line) shows the profile-likelihood function for the (instantaneous) cuto↵
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Figure 6.27: Likelihood function for lternative high energy cuto↵model: astrophysical
flux vanishes instantaneously for E > Ecut. Detector-related systematics not included.

energy (no detector systematics included). The cuto↵ energy increased compared to the
previous estimate based on the exponential cuto↵, since the flux has to be non-zero at
energies where we have observed corresponding events. The influence of the Glashow
resonance is visible as a steepening of the profile likelihood function at ⇠ 6.3 PeV. At
even higher energies it approaches a constant, since our dataset has no sensitivity to
the low fluxes expected from a single powerlaw at these very high energies. In this
simplified cuto↵ model, roughly half of the (insignificant) preference (half of the test-
statistic value at the plateau) for a cuto↵ is contributed by the non-observation of the
Glashow Resonance. Should future IceCube data with larger statistic provide stronger
evidence for a cuto↵ based on the non-observation of the Glashow Resonance, it will be
necessary to include uncertainties on the astrophysical ⌫e : ⌫̄e-ratio. If the spectrum is
depleted from electron anti-neutrinos the Glashow Resonance signal will be suppressed.
Finally, for the interested reader, we also show the powerlaw spectral index as function of
instantaneous cuto↵ energy (red line). The impact of the non-observation of the Glashow
Resonance on the spectral index is negligible (�� < 0.02).

6.6.2 The Log-Parabola

The best-fit parameters for the log-parabolic powerlaw (eq. (5.8)) can be found in Tab.
6.7. We find a non-zero value for the parameter that controls the log-parabolic curvature
b = 0.096+0.077

�0.060. Furthermore we obtain a spectral index �astro = 2.62 ± 0.12 and a
flux normalization of �astro = (1.77+0.33

�0.29) GeV�1cm�2s�1sr�1, both measured/defined at
a neutrino energy of 100 TeV. Fig. 6.28 (top) shows the two-dimensional confidence
contours for the curvature parameter b and either one of the remaining two powerlaw
parameters, spectral index �astro (black) and normalization �astro (red). Both show a
weak correlation with the curvature parameter. The inclusion of the additional parameter
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Parameter Calibration Result ±1�

log-slope b - (0.096+0.077
�0.060)

spectral index � - 2.62 ± 0.12
norm astro � - (1.77+0.33

�0.29) c.u.
norm conv �conv - (1.04+0.13

�0.11) ⇥ �HKKMS06

norm prompt �prompt - < 2.97 ⇥ �BERSS

norm muon �muon - 1.42 ± 0.04
cosmic ray index dev. ��CR 0.00 ± 0.05 0.04 ± 0.03
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.03 ± 0.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 0.98 ± 0.04
scattering scale (HI) ✏abs 1.00 ± 0.67 1.67 ± 0.18
DOM e�ciency ✏eff 0.99 ± 0.10 1.04+0.08

�0.07

�2 log⇤sat 61.87

Table 6.7: Best-fit values for assuming the astrophysical neutrino flux to follow a
log-parabolic power-law. (⇤) nuisance parameters are anti-correlated with ⇢ = �0.1

again increases uncertainty about the spectral index and normalization as shown in Fig.
6.28 (bottom left).
We again perform a likelihood ratio test to compare this model with the baseline single
powerlaw assumption:

H0 : b = 0 against H1 : b > 0 (6.16)

This test satisfies the conditions for a theorem by Cherno↵ [193], and thus the test-
statistic distribution is expected to approach eq. (6.4) as the size of the sample becomes
large. We again derived the test-statistic distribution for sample sizes comparable to ours
(within Poisson fluctuations) from simulated toy-experiments assuming the true values to
be given by Tab. 6.1. The resulting distribution (4200 toy-datasets) is shown in Fig. 6.28
(bottom right). The distribution appears very similar but not identical to the asymptotic
expectation from eq. (6.4). This is probably again due the fact that the parameter b is
sensitive to the high energy region and correspondingly the small number of events there.
Finally, we obtain a p-value of p = 0.049.

6.6.3 The Broken Powerlaw

The best-fit parameters for the broken powerlaw (eq. (5.6)) can be found in Tab. 6.8.
We find a break energy of log

10
(Eb/GeV ) = 4.85+0.33

�0.40, i.e. a spectral break at 71 TeV.
Compared to the single powerlaw we find a harder best-fit spectral index of �1 = 2.27+0.18

�0.34

at energies below the break energy and a softer best-fit spectral index of �2 = 2.92+0.41
�0.25

at energies above. The latter well-reproduces the soft spectral index measured with High
Energy Starting Events [204] above 60 TeV (c.f. discussion in Sec. 6.2). We further find
a flux normalization at a neutrino energy of 100 TeV of � = 1.86+0.55

�0.42 GeV�1cm�2s�1sr�1.
Fig. 6.29 (top) shows the two-dimensional profile likelihood contours for the break en-
ergy (log

10
(Eb)) and either of the two spectral indices (�1, �2). The uncertainties are

very large, especially as the break energy goes to small (large) energies. In those re-
gions of the parameter-space it is di�cult to constrain the spectral index of the lower
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Figure 6.28: Top: confidence contours for log-parabolic curvature and normalization
in red (spectral index in black). Bottom left: confidence contour for normalization and
spectral index. Bottom right: test-statistic distribution of likelihood ratio to calculate
significance w.r.t to single power-law without cuto↵.

(higher) energies, �1 (�2). The degenerate configuration that recovers the single power-
law �1 = �2 = 2.53 is visualized by the black, dashed line. If both spectral indices lie
on this line, the break energy is not defined and has no meaning. This is similar to case
of the single powerlaw at � = 0, where the spectral index becomes undefined. We also
calculated a profile-likelihood contour for the two spectral indices (�1, �2) to facilitate
a better visual comparison to the degenerate point. However, this particular calcula-
tion su↵ered from instabilities due to multiple minima along the break energy dimension,
leading to confusion during numerical minimization. To avoid these numerical problems,
we performed a similar calculation using a Bayesian approach and ensemble MCMC.
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Parameter Calibration Result ±1�

break energy log10(Eb/GeV) - (4.85+0.33
�0.40)

spectral index (1) �1 - 2.27+0.18
�0.34

spectral index (2) �2 - 2.92+0.41
�0.25

norm astro � - (1.86+0.55
�0.42) c.u.

norm conv �conv - (1.03+0.13
�0.11) ⇥ �HKKMS06

norm prompt �prompt - < 2.57 ⇥ �BERSS

norm muon �muon - 1.42 ± 0.04
cosmic ray index dev. ��CR 0.00 ± 0.05 0.04 ± 0.03
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.03 ± 0.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 0.98 ± 0.04
scattering scale (HI) ✏abs 1.00 ± 0.67 1.67 ± 0.18
DOM e�ciency ✏eff 0.99 ± 0.10 1.04+0.08

�0.07

�2 log⇤sat 60.44

Table 6.8: Best-fit values for assuming the astrophysical neutrino flux to follow a
broken power-law. (⇤) nuisance parameters are anti-correlated with ⇢ = �0.1

Assuming uniform prior distributions for the unknown astrophysical parameters and ig-
noring detector-related systematic uncertainties to reduce the number of dimensions, we
marginalized over all remaining nuisance parameters and obtain the joint two-dimensional
posterior distribution for �1 and �2 shown in Fig. 6.29 (bottom right). We find the un-
certainties derived in this way to be slightly larger than their frequentist counterparts. In
particular the 68% highest posterior density contour touches the degeneracy axis (white
dashed line).
To estimate the significance corresponding to the improved fit of this model over the
single powerlaw we again employ a likelihood ratio test:

H0 : �1 = �2 against H1 : �1 6= �2 (6.17)

This test does not involve any parameter space boundaries and we therefore do not expect
any related e↵ects to influence the test-statistic (�2 log ⇤) distribution. Assuming a fixed
value for the break energy we expect from Wilks’ theorem the distribution to be �2

1
. This

expectation is an excellent match to our simulation based estimate (log
10

(Eb/GeV ) 2
{4.3, 4.6, 4.9} fixed), see Fig. 6.30 (top left). However, for the realistic case of the break
energy being unknown, the distribution is unknown. In this case Wilk’s theorem does
not apply because, as discussed, the break energy is undefined under H0. Fig. 6.30 (top
right) shows the distribution of �2 log ⇤ obtained from simulating replicated toy-datasets
and perform the hypothesis test with variable break energy. We determine a p-value of
0.10. Since this model is complex and we previously observed multiple minima along the
break energy dimension, we did not fully trust this result. As discussed in the context
of rejecting the atmospheric background only hypothesis (c.f. Sec. 6.3) one can (under
suitable conditions) relate the test involving a variable parameter, undefined under H0,
to a simpler problem, in which this parameter has a known, constant value. However a
look elsewhere correction is required [213][214][211]. The p-value can be determined from
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Figure 6.29: Top: confidence contours for break energy and high energy spectral index
in red (low energy spectral index in black). Bottom left: profile likelihood function and
flux normalization as function of break energy. Bottom right: Bayesian credible region
for both spectral indices (low and high energy).

[212]

p = P
�
�2

1
> ⇠obs

�
+ E[U(c0)|H0] ⇥ exp

✓
�⇠obs � c0

2

◆
(6.18)

where E[U(c0)|H0] is again the expected number of up-crossings of the in this particular
case corresponding �2

1
-random process9. Defining a search region of log

10
(Eb/GeV ) 2

[4.0, 6.0] and choosing c0 = 0.5 we find E[U(c0)|H0] = 0.60, as shown in Fig. 6.30

9Eq. (6.5) appears slightly di↵erent, because of the parameter boundary at � = 0 that yields a
1
2�

2
1 + � (0)-random process (for the test discussed in Sec. 6.3) instead of a �2

1-random process (for the
test discussed here).
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Figure 6.30: Significance calculation for broken powerlaw model. Top left: test-
statistic distribution for fixed break energy. Top right: test-statistic distribution for
variable break energy. Bottom left: up-crossing of LRT random process. Bottom right:
distribution of number of up-crossings.

(bottom left: random process realizations, bottom right: distribution of up-crossings).
From eq. (6.18) we find

p = 0.11 (6.19)

which compares very well to the previous estimate and is the final result of this test. For
completeness we determine a trials factor of 3.4 for the search window (break energy)
mentioned above.

6.6.4 The 2-Component Powerlaw

The 2-component powerlaw, eq. (5.5), does not provide a better fit to this dataset than the
single powerlaw, despite introducing two additional parameters. The best-fit value for the
normalization of the additional, harder flux component is �2,0 = 0 GeV�1cm�2s�1sr�1 and
thus no high energy spectral hardening is observed. The model reduces to and is identical
with the single powerlaw. The best-fit parameters can be found in Tab. 6.1. Since tow
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component models have received considerable attention in the literature [218][219][220],
we will further examine this null result in the following. Fig. 6.31 (top) shows the
two-dimensional profile likelihood confidence contours for the two new parameters in eq.
(5.5) (mixture fraction ↵ and spectral hardening ��). At the boundaries (↵ ! {0, 1} or
�� = 0) the model is degenerate and reduces to the single powerlaw. For small (large)
values of the mixture fraction this dataset can not meaningfully constrain the amount of
spectral hardening ��, because the hard (soft) component is subdominant compared to
the “background“ from the soft (hard) component. We can exclude 2-components power-
laws that for each component predict roughly equal intensities at 100 TeV (0.3 < ↵ < 0.7)

Figure 6.31: Uncertainties related to the two new parameters in the 2-component
parameter model: mixture fraction ↵ and spectral hardening��. Top: profile likelihood
function. The best-fit value is marked by the red point. Bottom: soft (left) and hard
(right) spectral indices as function of ↵ and ��. Detector-related systematics not
included.
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and spectral hardening �� greater than ⇠ 0.6 at 90% C.L.. Fig. 6.31 (bottom) shows
the corresponding conditional best-fit values for the soft (left) and hard (right) spectral
indices. If �� becomes large, i.e. ↵ ! {0, 1} the spectral index of the dominant compo-
nent approaches best-fit value from the single powerlaw (⇠ 2.5), while the subdominant
component realizes very large (soft component) or very small values (hard component),
thus generating the large spectral di↵erence between both components. We should men-
tion that we did not include detector-related systematic uncertainties in the calculation of
these contours to speed up the numerical minimizations. We assumed a nominal detector
response except for the non-standard hole-ice scattering length of 30 cm.
In order to facilitate a better comparison to the latest measurement using muon neutrinos
from the northern hemisphere [205], we would like to change the model parametrization
from eq. (5.5) (useful for hypothesis testing purposes) to the one of eq. (5.3). For numer-
ical reasons, this is easier done within a MCMC based calculation. Hence we performed
the calculation using a Bayesian approach. We employ prior probability distributions
(including the detector-related systematic parameters) that reflect information obtained
in auxiliary calibration measurements (c.f. Sec. 5.3 and 5.8). For the truly unknown
parameters (�prompt, �astro, �soft,↵, ��) we assume uniform prior distributions10. The re-
sulting 68% highest marginal posterior density regions for both components, soft (red)
and hard (blue), are shown in Fig. 6.32 (top left). Also shown is the result based on
muon neutrinos [205] (green). Superficially the agreement is improved, as the contours
(green, blue) appear lass separated compared to the single powerlaw assumption (c.f. Sec.
6.2 and Fig. 6.13), due the increased uncertainties. Fig. 6.32 (top right) visualized the
strong anti-correlation between both components. When the hard component realizes its
maximum intensity, the flux from the soft component vanishes. In particular the distri-
bution appears bi-modal, where each peak represents a solution that reduces to the single
powerlaw.

While no evidence for 2-components was found, it is still interesting to ask what the
two-component flux would look like, if information from the muon neutrino measure-
ment was added. While this is best done within a global fit [199][202], we can provide
an approximate solution by treating the result from the muon neutrino measurement
[205] (green contour) as a prior distribution for the harder of the two flux components
(blue). The result is shown in Fig. 6.32 (2nd row). The posterior distribution of the

10We did not perform a sensitivity analysis to these choices. If in the future the evidence for this
2-component model becomes more convincing, this would become necessary. In particular we would
advice to replace the uniform prior for �prompt by one derived from theory, e.g. using [102], in order to
a-priori penalize unrealistically large prompt neutrino fluxes. Uniform priors do not represent a realistic
state of knowledge, if true e↵ect sizes are expected to be small [221].

Parameter Result 68%-HPD interval

Norm (1) �hard 1.10 c.u. [0.89, 1.40]
spectral index (1) �hard 2.29 [2.20, 2.38]
Norm (2) �soft 0.56 c.u. [0.12, 0.75]
spectral index (2) �soft 2.72 [2.49, 2.86]
�2 log⇤sat 68.12

Table 6.9: Credible intervals for each parameter in the two-component scenario -
includes the ⌫µ-tracks prior [205].
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Figure 6.32: Highest posterior credible regions for two component powerlaw. Top:
uniform prior distributions for �1,2 and �1,2. Two dimensional contours for each com-
ponent (left). Anti-correlation between normalizations of both components (right).
Middle: same above, but using ⌫µ-track measurement [205] (green) as prior for the
hard component (blue). Bottom: corresponding flux.
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hard component (blue) does not show a strong pull away from its prior distribution
(green), as would be expected if the data conflicts with the prior. The maximum like-
lihood (maximum a posteriori probability) point estimate for the hard component is
�hard = 1.10 · 10�18 GeV�1s�1sr�1cm�2 at 100 TeV and �hard = 2.29. In addition we find
a subdominant soft component characterized by �soft = 0.56 ·10�18 GeV�1s�1sr�1cm�2 at
100 TeV and �soft = 2.72. Highest posterior density credible intervals for each parameter
are given in Tab. 6.9. Obviously, this solution does not describe this dataset as well as
the single powerlaw does, since the best-fit 2-component powerlaw reduces to the single
powerlaw if the information provided by the muon neutrino measurement is ignored. The
di↵erence in fit-quality between the best-fit solution (Tab. 6.1) and the “priored“ solu-
tion (Tab. 6.9) equals 3.1 units of �2 log ⇤, corresponding to a p-value of ⇠ 0.511. Thus,
assuming that nature indeed realized a 2-component powerlaw, the preference for the
single powerlaw configuration would not be significant, and, in particular, the “priored“
solution is consistent with this dataset. Fig. 6.32 (bottom) compares the “priored“ dou-
ble powerlaw solution (solid black line) to the flux obtained assuming a single powerlaw
(dashed black line). At neutrino energies below 100 TeV, where this analysis most sensi-
tive, both solutions are essentially indistinguishable. At higher energies, the prior from
[205] requires a larger flux compared to the single powerlaw. Fig. 6.32 also shows the
decomposition of the total double powerlaw flux (solid black line) into its 2-components:
soft component (red band) and hard component (blue band).
It remains to be evaluated, however, whether or not the subdominant soft component in
this model would conflict with the muon neutrino data at low energies. Finally, we would
like to point out that the discussion above can not replace a complete, joint analysis in
form of a global fit.

6.6.5 The Piecewise Model

The piecewise-model allows for a less model-dependent analysis of the astrophysical neu-
trino spectrum. It assumes a (logarithmic) step-function for the astrophysical energy flux
in neutrinos (E2

⌫�⌫) and is given by eq. (5.12). Due to the large number of parameters
and thus the large flexibility of this model we have not been able to include detector
systematic uncertainties in the fit. We assume a nominal detector response except for
an alternative hole-ice scattering length of 30 cm that appears strongly preferred by this
analysis. Fig. 6.33 shows the best-fit piecewise model (horizontal black bars) and 68%
C.L. confidence intervals (or upper limits) on the normalization parameters for each seg-
ment (vertical black bars). For comparison the same figure shows the single-powerlaw
best fit from Tab 6.1 (black line) and corresponding point-wise (black dots) as well as
joint (red band) 68% C.L. confidence bands including all detector systematic uncertain-
ties. Additionally we highlighted the single powerlaw energy range derived in eq. (6.11)
in red. Both models compare well, where the data can meaningfully constrain all relevant
parameters (i.e ⇠ 10 TeV � 150 TeV). At higher energies the available data statistics
is scarce and the piecewise model does not provide additional information about the
spectral behavior of the flux, except for the total intensity. Similarly, uncertainties are

11This number ignores possible (near-)boundary e↵ects, that invalidate Wilks’ theorem but are not
expected to alter the conclusion.
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Figure 6.33: Best-Fit astrophysical neutrino flux according to the piecewise flux model
(black). compared to single powerlaw flux measurement (red band).

large at low energies, primarly because of the dominant conventional atmospheric neu-
trino background and corresponding fluctuations. Without formal model comparison it
appears obvious that the piecewise model fit is not providing evidence against the single
powerlaw model because of the good agreement between both.
Fig. 6.34 shows the same comparison for the di↵erent spectral models beyond the single
powerlaw, discussed in Sec. 6.6. While in agreement with all of them, they highlight
one particular aspect: uncertainties on the astrophysical flux increase very rapidly at the
low and high energy ends, especially if joint coverage is required - for example if the flux
needs to be extrapolated in order to compare to other experiments (c.f. multi-messenger
constraints, e.g. Sec. 1.6). Already the log-parabolic flux model (top right), which only
adds one more parameter, shows significantly larger uncertainties towards low and high
energies than the single powerlaw model.

6.6.6 The 2-Hemisphere Model

All of the previous models left one assumption un-questioned: They all assumed that
the astrophysical neutrino flux is isotropic. The 2-hemisphere model, eq. (5.11), allows
for testing of that assumption, especially to what extent some of the previous results
depend on it. A possible north-south asymmetry in the astrophysical neutrino has been
reported by a recent, combined IceCube analysis [199], albeit large uncertainties and low
significance (1.1�). In particular a hard spectrum was observed in the northern sky,
�N = 2.0+0.3

�0.4, with a small normalization of �N = 0.7+1.0
�0.5 · 10�18 GeV�1s�1sr�1cm�2.

The spectral index obtained from the southern hemisphere appeared similar to the one
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Figure 6.34: Best-Fit astrophysical neutrino flux according to the piecewise flux model
(black). Comparison to other flux models: single powerlaw w. cuto↵ (top left, blue),
log-parabolic powerlaw (top right, magenta), broken powerlaw (bottom left, green) and
two-component powerlaw (bottom right, purple)

obtained in this work �S = 2.56 ± 0.12 but with larger normalization of (2.3 ± 0.5) ·
10�18 GeV�1s�1sr�1cm�2. Such asymmetry has subsequently been proposed to explain
the di↵erence between the preferred spectra by tracks (muon neutrinos) and cascades
(electron and tau neutrinos), e.g. [222], and neutrino emission from our own galaxy
has been suggested as explanation, e.g. [223]. A similar trend has been reported by
a third-party analysis [220] of the 4-year dataset of High Energy Starting Events [182].
The authors of [220] emphasize the negligible significance due to large uncertainties,
especially in the northern sky where Earth’s absorption at high energies suppresses the
already small neutrino flux even further. Since in this work, we have significantly lowered
the energy threshold and thus observe a larger number of astrophysical neutrino events
from the northern sky, we are in a unique position to study the possibility of such aa
asymmetry. Finally, thanks to our extended and much improved treatment of detector-
related systematic uncertainties, we will be able to show that at least for cascade-type
events, di↵erent assumptions about photon scattering in the ice (bulk-ice and/or hole-ice)
can make an isotropic flux appear asymmetric with respect to the two hemispheres in the
detector.
The best-fit values for this 2-hemisphere model are shown in Tab. 6.10. The spectral
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Parameter Calibration Result ±1�

norm astro (north) �N - (1.15+0.77
�0.82) c.u.

spectral index (north) �N - 2.43+0.19
�0.33

norm astro (south) �S - (1.55+0.31
�0.28) c.u.

spectral index (south) �S - 2.53 ± 0.12
norm conv �conv - (1.01+0.13

�0.11) ⇥ �HKKMS06

norm prompt �prompt - 2.51+5.18
�2.51 ⇥ �BERSS

norm muon �muon - 1.43 ± 0.04
cosmic ray index dev. ��CR 0.00 ± 0.05 0.04 ± 0.03
scattering scale (bulk) ✏scat 1.00 ± 0.07(⇤) 1.02 ± 0.03
absorption scale (bulk) ✏abs 1.00 ± 0.07(⇤) 1.00 ± 0.04
scattering scale (HI) ✏abs 1.00 ± 0.67 1.62+0.21

�0.20

DOM e�ciency ✏eff 0.99 ± 0.10 1.04+0.08
�0.08

�2 log⇤sat 64.62

Table 6.10: Best-Fit parameters for the phenomenological two hemisphere model
(di↵erent single power laws in northern and southern skies). (⇤) nuisance parameters
are anti-correlated with ⇢ = �0.1

properties measured for the two hemispheres appear well-consistent. We obtain a flux at
100 TeV of �N = (1.15+0.77

�0.82) · 10�18 GeV�1s�1sr�1cm�2 with spectral index �N = 2.43+0.19
�0.33

for the northern sky and normalization �S = (1.55+0.31
�0.28) · 10�18 GeV�1s�1sr�1cm�2 with

spectral index �S = 2.53 ± 0.12 for the southern sky. Both appear well-consistent. This
scenario can be compared to the isotropic, single powerlaw best fit (Tab. 6.1) by means
of a likelihood ratio test.

H0 : (�N , �N) = (�S, �S) against H1 : (�N , �N) 6= (�S, �S) (6.20)

This test satisfies all conditions of Wilks’ theorem, eq. (5.26) (no boundary e↵ects, no
parameters undefined under H0), and thus we find p = 0.82 for the observed test-statistic
value of �2 log ⇤ = 0.41. We therefore conclude that there is no evidence for tension
between the astrophysical spectra inferred separately for the two hemispheres. Fig. 6.35
shows the two-dimensional 68% confidence contours for the astrophysical parameters in-
ferred from the two hemispheres, northern sky (solid black line and black circle) and
southern sky (solid red line and red circe), in comparison to the baseline result assuming
an isotropic flux (blue solid line, blue star). The same figure also shows other solutions
(dashed and dotted lines) that we will come back to later in this section. The flux is mea-
sured much more precisely in the southern sky than in the northern sky. The di↵erence
in precision is too large to be explained by the di↵erences in the total number of observed
events at high energies. As discussed in several places, e.g. Sec. 6.3 and Sec. 6.5, due
to the absence of any atmospheric self-veto capabilities in the north, there exists a large
degeneracy between the spectral shape of the prompt flux (� ⇠ 2.7) and the rather soft
astrophysical neutrino flux �astro ⇠ 2.5 obtained in this work. This degeneracy is reflected
in the uncertainties of the flux measurement in the northern sky. In fact, the preferred
solution in this two-hemisphere model finds a non-zero prompt component with normal-
ization �prompt = 2.51+5.18

�2.51 ⇥ �BERSS. Given the large uncertainty, which makes this
solution well consistent with zero prompt flux, we can not claim, that in this scenario we
would have observed a prompt atmospheric neutrino flux. This large degeneracy between
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Figure 6.35: Confidence contours for parameters in two hemisphere model. Northern
sky (black) and southern sky (red). Comparison to isotropic flux assumption (blue).
Various assumptions about detector systematics (see text).

both components strongly impedes the ability of this measurement to disfavor by itself
large spectral di↵erences in the astrophysical flux from both hemispheres. In particular,
this measurement, while consistent with an isotropic flux, would also be consistent with
an astrophysical flux in the northern hemisphere with spectral properties as di↵erent, i.e.
as hard, as the one observed with muon neutrinos from northern sky at higher energies
[205]. However, a previous iteration of the same analysis [201] obtained a strong upper
limit for the prompt atmospheric neutrino flux �prompt < 1.06 ·�ERS, which is at the level
of the best-fit prompt normalization for this 2-hemisphere scenario (see Tab. 6.10 and
Sec. 6.5 for details). Fig. 6.36 (top left) shows how the conditional best-fit value for the
prompt normalization depends on the assumed astrophysical neutrino flux in the north-
ern sky. The problematic degeneracy is shown as an increase in prompt normalization in
the direction of smaller astrophysical normalization with harder spectral indices (i.e. in
the direction of the best-fit values for the muon neutrino measurement [205]). To bet-
ter facilitate a comparison between both measurements in the northern sky, we repeated
the 2-hemisphere fit under the assumption that the prompt normalization is vanishingly
small (�prompt/�BERSS = 0), consistent with the best-fit and strong upper-limit reported
in [201]. This breaks the degeneracy. The result is shown in Fig. 6.36 (bottom) as the
dashed (dotted) black line, while the result of [205] is shown in pink for comparison. The
best-fit values are marked by up-triangles and given in Tab.6.11. Compared to the best-fit
(Tab. 6.10, black and red points in Fig. 6.36 (bottom)), forcing the prompt normalization
to 0 improves the consistency between both hemispheres event further, while the quality
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Figure 6.36: Top left: northern sky flux measurement assuming no prompt flux exists.
Top right: constraints on prompt flux normalization if astrophysical flux is allowed to
be di↵erent in the two hemispheres. Bottom: Confidence contours for parameters in two
hemisphere model with (solid) and without prompt flux (dashed, dotted)). Northern
sky (black) and southern sky (red). Comparison to isotropic flux assumption (blue).

of the fit (�2 log ⇤ = 0.13) is essentially identical. Since the degeneracy is broken, the
uncertainties for the astrophysical flux parameters (Northern Sky) are much reduced.
They remain, however, larger than the ones obtained in the southern sky because of the
larger conventional atmospheric neutrino background at low energies and smaller number
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Parameter Calibration Result ±1�

norm astro (north) �N - (1.51+0.21
�0.39) c.u.

spectral index (north) �N - 2.48+0.15
�0.15

norm astro (south) �S - (1.61+0.30
�0.26) c.u.

spectral index (south) �S - 2.55 ± 0.10
norm prompt �prompt - 0.0 (fixed)
�2 log⇤sat 64.75

Table 6.11: Best-Fit values for two-hemisphere model assuming no prompt flux exists.

Parameter Calibration Result ±1�

norm astro (north) �N - (1.37+0.38
�0.86) c.u.

spectral index (north) �N - 2.40+0.16
�0.27

norm astro (south) �S - (1.69+0.27
�0.26) c.u.

spectral index (south) �S - 2.54+0.09
�0.11

scattering scale (HI) ✏abs - 1.67 (fixed)
�2 log⇤sat 67.89

Table 6.12: Best-Fit values for two-hemisphere model assuming a 30 cm scattering
length in IceCube’s hole ice. All other detector-related systematics parameters are fixed
to their nominal values (see text).

of events in the background free regime at higher energies). While still consistent with
the muon neutrino measurement at the < 2� level, our Northern-Sky flux measurement
now rejects the corresponding best-fit astrophysical flux parameter values at the ⇠ 90%
confidence level. This demonstrates that introducing a North-South asymmetry into the
astrophysical spectrum does not appear to meaningfully improve the agreement between
both measurements (other than increasing uncertainties).

Impact of Systematic Uncertainties
How would the conclusions di↵er, had we not introduced an improved treatment of sys-
tematic uncertainties into the analysis? To answer this question, we redo the fit under
di↵erent assumptions. First, we ignore detector-related systematic uncertainties but as-
sume a detector with a hole-ice scattering length of 30 cm that otherwise behaves nomi-
nally. The result is shown in Fig. 6.35 for both hemispheres: Northern Sky (black dashed
contour) and southern sky (red dashed contour). The best-fit values are marked by up-
triangles and are given in Tab. 6.12. The quality of the fit worsens by 3.3 units of �2 log ⇤,
but remains good. The change is not significant, since we forced four parameters to their
nominal values. The agreement between both hemispheres, while still good, also becomes
slightly worse. This can be evaluated by re-doing the relevant test, eq. (6.20). The
relevant isotropic single powerlaw fit result corresponding to the identical assumptions
about systematic uncertainties is the green contour of Fig. 6.9 (bottom left). The test-
statistic value for a test between that result and the one in Tab. 6.12 is �2 log ⇤ = 2.58,
which is larger than what we obtained for the full treatment of systematic uncertainties
(�2 log ⇤ = 0.41). Correspondingly, we find a smaller p-value of p = 0.3, which still does
not constitute any interesting evidence for a North-South asymmetry in the flux.
The second assumption is more extreme. We keep all detector systematics related param-
eters at their nominal values, as before. However, in addition, we also assume a nominal
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Parameter Calibration Result ±1�

norm astro (north) �N - (1.17+0.40
�0.76) c.u.

spectral index (north) �N - 2.25+0.16
�0.25

norm astro (south) �S - (1.85+0.31
�0.27) c.u.

spectral index (south) �S - 2.70+0.09
�0.10

scattering scale (HI) ✏abs - 1.00 (fixed)
�2 log⇤sat 83.19

Table 6.13: Best-Fit values for two-hemisphere model assuming a 50 cm scattering
length in IceCube’s hole ice. All other detector-related systematics parameters are fixed
to their nominal values (see text).

hole-ice scattering length of � = 50 cm, which has been the baseline assumption in pre-
vious IceCube analyses. Repeating the fit, we obtain the dotted contours shown in Fig.
6.35, which show a clear separation of the measured fluxes in the two hemispheres. The
best-fit values are marked as down triangles and are given in Tab. 6.13. In particular we
find a quite hard spectrum for the Northern Sky with �N = 2.25. The fit-quality further
deteriorates by 18.58 units of �2 log ⇤, which corresponds to a goodness-of-fit p-value
of 7.5% for this scenario. While small, based on this value alone, one would not reject
this fit result. Would this fit have yielded evidence for an asymmetric flux? We apply
the hypothesis test of eq. (6.20). The relevant isotropic single-powerlaw fit result for the
same assumptions about the detector is now given by the red contour in Fig. 6.9 (bottom
left). The observed test-statistic value would become �2 log ⇤ = 21.62 corresponding to
a p-value of 2 · 10�5, or equivalently 4.1 �12. This would strongly favor the presence of
a north-south asymmetry in the astrophysical neutrino flux, while not necessarily being
flagged as a bad fit by the more general fit quality criteria.

Impact on Prompt Upper-Limit
As discussed in Sec. 6.5 the ability of this analysis to constrain the intensity of the prompt
atmospheric neutrino flux partially depends on the assumption that the astrophysical
neutrino flux is isotropic, in particular symmetric with respect to both hemispheres. The
2-hemisphere astrophysical flux model can be used to check, by how much the limit would
weaken if we were to relax this condition. Fig. 6.36 (top right) shows the profile-likelihood
function for the prompt atmospheric neutrino flux normalization using the 2-hemisphere
model for the astrophysical neutrino flux (red) in comparison to the nominal isotropic
assumption (black). We observe significant weakening of the 90% C.L. upper limit from
4.8 · �BERSS to 10.5 · �BERSS or, equivalently, 3.7 · �ERS. Thus far, no IceCube analysis
has obtained evidence for potential anisotropies in the flux of high energy astrophysical
neutrinos, neither in the track [87][62] nor cascade [224] channel. Thus, assuming an
extra-galactic origin with isotropic arrival directions appears reasonable.

12This is assuming that Wilk’s theorem (k = 2) holds far into the tail of the test-statistic distribution.
One would check this by means of simulated toy-experiments.
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Chapter 7

Summary and Outlook

Figure 7.1: Summary of fluxes of high energy cosmic messengers: �-rays observed
by Fermi [225] (orange), cosmic-rays recorded by the Pierre Auger Observatory [226]
(green), the neutrino flux measured here (red and black), the neutrino flux observed
in the track channel (⌫µ) [205] an limit on GZK neutrinos (all flavors) set by IceCube
[227]

In this dissertation we studied in-depth the flux of high energy astrophysical neutrinos,
discovered by the IceCube experiment [5]. For this purpose we developed a new event
selection focusing on neutrino induced cascades, mainly sensitive to the electron and tau
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neutrino component of this flux. Compared to previous works [164][155] we increased
the electron neutrino e↵ective area at all energies, ranging from a 25% increase at PeV
energies to more than a factor of 10 increase around 1 TeV. We applied the methods
experimental data recorded with the IceCube detector in the years 2012 to 2015 and
obtained IceCube’s largest cascade sample to date. In total we find ⇠ 6300 neutrino can-
didate events with an estimated purity of > 90%. The majority of these events ⇠ 75%
are identified as cascade-like including an estimated number of ⇠ 400 astrophysical elec-
tron and tau neutrinos. We find these events to be well described by an isotropic, single
powerlaw astrophysical neutrino flux with spectral index � = 2.53+0.07

�0.09 and per-flavor nor-
malization � = 1.58+0.25

�0.28 GeV�1cm�2s�1sr�1 at a neutrino energy of 100 TeV. Compared
to previous works we have improved the treatment of systematic uncertainties, which
now account for detector related uncertainties as well as uncertainties in the atmospheric
neutrino flux, such as the di↵erent hadronic interaction models. The contribution from
astrophysical neutrinos is favored over a purely atmospheric origin with a statistical sig-
nificance of 8.7�. We further studied simple extensions to the single powerlaw flux model
that could arise from di↵erent scenarios of astrophysical neutrino production. We have
not observed evidence for such additional complexity in the flux model, but uncertainties
are large. Therefore only extreme cases can be excluded, such as strong spectral harden-
ing �� > 0.6 in a two-component powerlaw scenario at 90% confidence level, assuming
that both components contribute noticeably to the observed neutrino flux. Finally, we
searched for a contribution from the expected flux of prompt atmospheric neutrinos from
the decays of heavy mesons (charm) in Earth’s atmosphere. The non-observation of this
flux corresponds to a flux upper-limit of 4.8 times the benchmark pQCD prediction we
considered (BERSS [102]) at 90% confidence level.
The results obtained in this dissertation are put into context with the neutrino flux
measurement by IceCube in the track channel (⌫µ), and measurements of other cosmic
messenger particles (�-rays by Fermi-LAT, cosmic-rays by PAO) in Fig. 7.1. Future Ice-
Cube measurements will investigate whether the small discrepancy between the results
reported here (red) and the ones measured with muon neutrinos from the Northern Sky
(blue) are due to a statistical e↵ect or due to a possible spectral hardening of the astro-
physical neutrino flux above ⇠ 100 TeV, which could for example be indicative of an extra
component in the neutrino flux. A combined analysis of the sample obtained here with
2012-2015 data and the previous cascade analysis of data recorded in 2010-2011[155]) will
be performed for the publication. Additional insights will come from a global analysis of
all IceCube detection channels, currently under development [202].
Considering the bigger picture, it remains to be seen whether (and if, how) the �-ray
flux measured by e.g. the Fermi satellite, the flux of cosmic-rays observed by e.g. the
Pierre Auger Observatory and the flux of neutrinos detected by IceCube can be related.
The intensity of the neutrino flux measured in this work (as well as in previous works)
might require neutrino production in dense astrophysical environments that high energy
�-rays can not e�ciently escape from [79][77]. The quest to understand the high energy,
non-thermal universe continues.
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Appendix A

Additional Analysis Topics

In this Chapter we will discuss the stability of the fit results against time (Sec. A.1
and provide some further insights into the preference for enhanced photon scattering in
IceCube’s drill holes, reported in this work (Sec. A.2).

A.1 Analysis of Individual Years of Data Taking

In the previous section we studied the spectral and, to a lesser degree, the directional
properties of the astrophysical neutrino flux. Here we will briefly study whether or not
the results show evidence for time dependence. This is mainly intended as a cross-check.
IceCube operates and takes data on a yearly basis, the so-called ”IceCube seasons”,
usually starting in May. Atmospheric neutrino background, while variable throughout
one season (⇠ 5%), is not expected, and has not been observed to, vary between seasons
[228]. Except for possible transient astrophysical phenomena, the astrophysical neutrino
flux is expected to be largely time-independent.

First, we investigated whether the astrophysical single powerlaw parameters (�, �), mea-
sured separately in each of the four seasons (2012/13/14/15), appear consistent with each
other. This can be tested by modeling the atmospheric background as well as the detector
systematics to be independent of the season (as before) but introducing extra parame-
ters for the astrophysical flux in each season: (�i, �i), with i 2 {12, 13, 14, 15}. This
increases the total number of astrophysical flux parameters from 2 to 8. Because of the
large number of parameters, we kept detector related parameters fixed at their nominal
values, except for a hole-ice scattering length of 30 cm. Fig. A.1 (top) shows the result
of this fit (each color represents one season) in comparison the to the result obtained for
the time-independent assumption (blue). Obviously, the uncertainties for the “yearly”
astrophysical parameters are quite large, since only a fraction of the available dataset can
be used to obtain parameter constraints. The best-fit value are given in Tab. A.1. The
large observed value of �2 log ⇤sat = 231.23 is expected. To perform the fit, we increased
the total number of bins by a factor of 4 (total number of seasons) from 78 to 312. Fig.
A.1 (top) does not show obvious outliers and all years appear consistent. To make this
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Figure A.1: Separating the flux measurement by year: fitting separate astrophysical
fluxes in each year, but sharing background flux normalizations (top). completely
separate fits with (bottom left) and without (bottom right) detector systematics.

observation quantitative, we perform the following hypothesis test:

H0 : (�i, �i) = (�j, �j) ^ ✓i = ✓j , 8i, j 2 {12, 13, 14, 15} against

H1 : 9 i 6= j, s.t. (�i, �i) 6= (�j, �j) ^ ✓i = ✓j , 8i, j 2 {12, 13, 14, 15}
(A.1)

where ✓ denotes the vector of nuisance parameters (here: normalizations of atmospheric
fluxes). Using the same binning, we find (� = 1.59, � = 2.5) (blue contour in Fig. A.1
(top)), which is essentially indistinguishable from the equivalent result obtained in 6.9
(bottom left, green contour). The corresponding observed value for the likelihood ratio
test-statistic is �2 log ⇤ = 3.96. Since the conditions for Wilks’ theorem are satisfied,
we find p = 0.68. Thus, the observed behavior across the 4 years of data taking is
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Figure A.2: Cascade energy spectral (all zenith angles) observed in the four years:
2012 (top left), 2013 (top right), 2014 (middle left) and 2015 (middle right). Bottom:
zenith distribution for year 2014 with E > 25TeV (left) and E > 40TeV (right)
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Parameter Calibration Result ±1�

norm astro (12) �12 - (1.47+0.37
�0.33) c.u.

spectral index (12) �12 - 2.48+0.14
�0.14

norm astro (13) �13 - (1.56+0.38
�0.34) c.u.

spectral index (13) �13 - 2.54 ± 0.13
norm astro (14) �14 - (2.02+0.39

�0.36) c.u.
spectral index (14) �14 - 2.38 ± 0.11
norm astro (15) �15 - (1.25+0.35

�0.31) c.u.
spectral index (15) �15 - 2.67 ± 0.13
norm conv �conv - (1.05 ± 0.02) ⇥ �HKKMS06

norm prompt �prompt - < 0.9 ⇥ �BERSS

norm muon �muon - 1.47 ± 0.02
scattering scale (HI) ✏scat CONST. 1.67
�2 log⇤sat 231.23

Table A.1: Best-fit values for the astrophysical flux parameters separated by year.
Background flux parameters are shared by all years.

perfectly consistent with the same single powerlaw astrophysical neutrino flux. So far,
this “year-by-year“ analysis assumed that background and detector related parameters are
constant (shared) between the years. This can further be relaxed by simply performing
the entire analysis (c.f. Sec. 5) individually for each year. The result is shown in
Fig. A.1 (bottom left: no detector systematic uncertainties; bottom right: with detector
systematic uncertainties). The conclusions remain unchanged. The observed best-fit
spectra, assuming the combined single powerlaw best-fit values (Tab. 6.1), are shown in
Fig. A.2 (all cascades) for the years 2012 (top left) to 2015 (2nd row, right). The same
spectra, when separated into the three declination bins, can be found in Appendix A: Fig.
A.6 (up-going cascades) and Fig. A.7 (near vertical (top) and horizontally down-going
(bottom) cascades). In general the simulation prediction describes the data observed
in the di↵erent periods well. However we found correlated excess of data events over
expectations in the year 2014 at high energies between 25 TeV and 250 TeV that extends
over 5 consecutive bins and requires further study.

Southern Hemisphere High Energy Excess in 2014
To learn about the observed excess, we attempted to correlate the corresponding high
energy events with other observables to identify possible common characteristics. These
include among others the cut-variables, reconstructed location of the events within the
detector, arrival direction, total PMT charge, BDT classification scores, etc. While the
events in question appear to stem from the southern hemisphere, no other clustering has
been found. The preference for the southern sky is shown in Fig. A.2 (bottom) for two
di↵erent energy thresholds: E > 25 TeV (left) and E > 40 TeV (right). The excess is
quite evenly distributed across cos ✓reco > 0.0 and does not appear to further prefer a
certain declination. Additional analysis showed that the events also do not cluster in
right-ascension and thus do not prefer a certain location in the sky1. The number of
events from the southern hemisphere with energies within the questionable energy range

1This does not necessarily fully exclude a common origin, due to the rather poor angular resolution
of cascades.
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for each year are as follows: 10 (2012), 11 (2013), 28 (2014) and 14 (2015). Such asym-
metric behavior is not expected from any of the non-time dependent explanations one
might consider: underestimated cosmic ray muon background, miss-modeling of atmo-
spheric neutrino background including the atmospheric neutrino self veto e↵ect, other
detector related systematics, and probably also a cosmic origin due to the absence of any
corresponding hot-spot in the sky.
In order to exclude the possibility of problems in the data processing chain for this par-
ticular region of observable space in the year 2014, we isolated events before any neutrino
selection criteria (BDT, high energy cuts) were applied. The selection corresponds to all
pre-selection criteria (L3A-D + L4A). In addition we required the events to be recon-
structed as down-going cos ✓reco > 0.0 and the total charge collected by the PMTs to be
larger than Q = 1000 p.e. to match the total PMT charge of the excess events. Roughly

Figure A.3: Comparison of the data rates (2013-2015) in the background region of
events with similar properties to the ones contributing to the excess in 2014.

700, 000 cosmic-ray muon events pass these criteria in each year. The contribution from
neutrinos is negligible (< 0.5%) for this selection. The reconstructed energy distribution,
obviously dominated by miss-reconstructed events, is shown in Fig. A.3 for the year 2014
(blue) and the adjacent years 2013 (red) and 2015 (green). The same figure also shows
for each energy bin the observed pull (in units of significance �) of the number of events
in 2014 from the average expectation given by the other two years. No (correlated) excess
is observed and the background rates after all pre-filtering criteria are stable. There are
additional reasons that disfavor muon background to be responsible for the excess:

• The excess is distributed across the entire fiducial volume without preference for
the detector boundaries.

• The excess persists even for the highest cascade.score classification (highest quality
events).
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• Manual inspection of the events did not reveal any muon-background-like character-
istics of the events. Their appearance/signature is well-consistent with expectations
from neutrino interactions.2

What is the significance of the excess? As we will show, the answer is highly depen-
dent on the calculation, in particular how much it is tuned to the actual observation.
One model-dependent possibility is to first fit the “standard“ model (single powerlaw
astrophysical neutrino flux, atmospheric background fluxes and detector systematics as
before, described in Sec. 5) to all data excluding the year 2014, in order to obtain a
baseline expectation. This results in the green contour in Fig. A.1 (bottom right). Sub-
sequently one would calculate the probability of observing at least 28 events, taking into
account the uncertainties determined in the previous step. We calculated the correspond-
ing posterior predictive distribution [221] for observing n14 events in the excess region r
(25 TeV < E < 250 TeV and cos ✓ > 0.0) with expectation µr (�, �):

p
�
n14 |X12/13/15

�
=

Z
d�

Z
d� p (n14 | µr (�, �)) f

�
�, � |X12/13/15

�
(A.2)

where f
�
�, � |X12/13/15

�
denotes the joint posterior distribution for � and � obtained

from a fit to the 2012/13/15 data X12/13/15. The result is shown in Fig. A.4 (top left). We
find p

�
n14 � 28 |X12/13/15

�
= 4 · 10�4, i.e. a significance of 3.4�. However, since we have

no alternative (and testable) model in mind that would better predict this observation,
we are inclined to interpret this as an unlikely fluctuation, rather than as evidence for an
unidentified time-dependent process. For one, we obtain lower significances, if we search
for discrepancies in general, rather than to look for a specific correlated excess (which we
only did, because we observed one.). For example, using the saturated poisson likelihood
goodness-of-fit measure from eq. (5.37), we find that the following posterior predictive
goodness-of-fit probabilities (Fig. A.4, 2nd row): p = 0.014 (left) for the 5 excess bins
(southern sky w. cos ✓ > 0.0, 25 TeV to 250 TeV) and p = 0.15 (right) for evaluating all
bins and thus measuring the compatibility between all observed cascade events in 2014
and the model prediction obtained from fitting the other 3 years.
Second, we had no a-priori reason to group the years in the way we did above, i.e. to
declare the year 2014 as di↵erent from the others. The impact of this choice can be
evaluated from the data without reference to any detector and flux models, by only
assuming time-independence of the rates Rr in the excess region (25 TeV < E < 250 TeV
and cos ✓ > 0.0) as follows:

H0 : R12

r = R13

r = R14

r = R15

r ⌘ Rr (A.3)

where the rate Rj
r relates to the observed number of events nj via the detector livetime

⌧j of each year.

nj ⇠ poisson
�
Rj

r · ⌧j
�

(A.4)

2One neutrino event (cascade) shows signs of a couple of early hits at the top of the detector, consistent
with being accompanied by a low energy muon, which indicates a common atmospheric origin. We
identified another event to be a miss-classified starting track and thus to be a muon neutrino. A third
event (cascade) appears coincident with an uncorrelated atmospheric muon that creates hits in a di↵erent
part of the detector at a much later time within the same trigger window. All three are consistent with
expectations.
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Figure A.4: Various possibilities to a-posteriori quantify the observed discrepancy in
the data taking year 2014. see text for details.
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Figure A.5: Time series of events with high energies (E > 25TeV) from the southern
sky throughout the four years (2012-2015). Transitions between calendar years are
marked by the vertical dotted lines. Transitions between detector seasons are marked
by vertical dashed lines (colors). Horizontal lines mark the solutions of possible change-
points models (see text).

Two alternative hypothesis could be used.

H1 : R14

r 6= R12/13/15
r , R12

r = R13

r = R15

r ⌘ R12/13/15
r (A.5a)

H1 : 9 i 6= j s.t. Ri
r 6= Rj

r, i, j 2 {12, 13, 14, 15} (A.5b)

The di↵erence becomes apparent when the number of parameters is considered. Eq.
(A.5a) requires 2 parameters (one rate for 2014 and one rate for the other years), while
eq. (A.5b) specified 4 parameters (one for each year). Applying both tests to the ob-
served data and calculating the test-statistic distributions from simulations (see Fig. A.4
bottom), we find p = 0.0015 using eq. (A.5a)) and p = 0.015 using eq. (A.5b)) - a factor
of 10 di↵erence. In the latter case, while not indicating good agreement, we would be
much less confident in claiming a possible time-dependence or inconsistency across the
years. The latter case, however, is the one, that appears more reasonable if we were to
truly consider the possibility that the rate could vary as a function of time.

Time Series of High Energy Events (Southern Hemisphere)
The best way to check for time-dependence in the astrophysical neutrino flux (in our data
sample to be more precise), is to study the time series of the events in the excess region
(high energy E > 25 TeV and down-going: cos ✓ > 0.0). Fig. A.5 shows the number of
observed cascade events with these properties per 2-week time period. Vertical dashed
lines (colors) denote the transitions from one IceCube data taking season to another. The
dotted black line mark the transitions between the calendar years. Also shown are the
results of various model assumptions (solid lines, colored) that are discussed below.
We define two simple models for the time-dependence of the rates (Rj

r) of high energy,
southern sky events throughout the total data taking period of 4 years. The first is the
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baseline model and assumes a constant rate:

R0

r (t) = r0 (A.6)

Since we are studying an excess of events, we introduce a change-point model, which
consists of up to 3 time segments. The second segment is allowed to have a di↵erent rate
than the other two. Hence this model could represent an isolated period of enhanced (or
reduced) neutrino detections, for example corresponding to some hypothetical astrophys-
ical phenomenon, e.g. some object in a state of enhanced neutrino emissivity. The model
reads

R1

r (t) =

8
><

>:

r1, t < t1
r2, t1  t  t2
r1, t2 < t

(A.7)

where r1, r2 > 0 are continuous rate parameters and t1, t2 are two discrete parameters
for the location of the change-points satisfying tstart  t1 < t2  tend + 1. The analysis
is performed using one time bin for each day within the 4 year period (1466 days). The
number of events observed for any given day follows a poisson distribution. Thus the
likelihood of eq. (5.15) applies.

For the constant model we find a best-fit rate of r0 = 0.63 · (2 wks)�1. This solution is
shown in Fig. A.5 (green solid line). Assuming the change-point model we obtain the
following best-fit values:

t1 = 1018 d, t2 = 1022 d, r1 = 0.59 · (2 wks)�1, r2 = 11.2 · (2 wks)�1 (A.8)

This solution, especially the large rate r2, corresponds to the observation of 4 events that
we find within a narrow time-period of 5 days (in the year 2014) and is shown in Fig. A.5
as well (blue solid line)3. Using a simple argument, it is possible to show that this is not
significant. The time-series can be split into ⇠ 293 distinct 5-day intervals. Assuming a
constant rate r0 = 0.63 · (2 wks)�1 = 0.23 · (5 d)�1 the probability of observing less than
4 events in one period is p(n < 4) =

P
3

k=0
ppois (k | r0) = 0.99991 ⇡ 1. The probability of

observing 4 or more events in (at least) one of the periods is pobs = 1�p(n < 4)293 = 0.026.
Thus in ⇠ 2.6% of the cases we expect to observe a localized clustering of events in time
similar (or more significant) to the one shown in Fig. A.5. Since the change-point model
allows for other configurations that could be preferred over the baseline model (more
extended clustering) this chance probability can be interpreted as an approximate lower
bound to the p-value. Thus the best-fit values for the change-point model do not provide
evidence against and are consistent with the baseline model.
While no evidence has been found, one might still wonder whether we could estimate a
more extended time-period if we restrict parameter r2 to smaller values. For the constraint
r2 < 2 · (2 wks)�1 we find

t1 = 744 d, t2 = 1106 d, r1 = 0.47 · (2 wks)�1, r2 = 1.12 · (2 wks)�1 (A.9)

3These 4 events are not localized in the Sky.
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This solution is shown in Fig. A.5 as red solid line. Under this constraint, the best-fit
period of enhanced event rates roughly coincides with the 2014-data taking period. The
starting point, however, is not well estimated. This is shown in Fig. A.4 (top right). The
solution is multi-modal and even includes the special case of not having any change-point,
i.e. where the change-points t1, t2 are located at the boundary and thus the baseline model
is recovered: r1 = r0. In summary, due to their low event rates, the high energy events
(E > 25 TeV) observed in this sample do not allow for strong statements about possible
time-dependence. More data and/or additional prior information would be needed.

A.2 Preference for Enhanced Scattering in IceCube’s
Drill Holes

One of the results obtained in this work concerns the IceCube detector itself. We found
that nominal assumptions about the detector response to light signals do not provide a
good fit to this data sample. When studying the impact of systematic uncertainties on
the observables (reconstructed energy and declination) we noticed that the reconstructed

Figure A.6: Energy Spectra for cascades with cos ✓rec < 0.2 for the years 2012 (top
left), 2013 (top right), 2014 (bottom left) and 2015 (bottom right)
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Figure A.7: Energy Spectra for cascades with 0.2 < cos ✓rec < 0.6 for the years 2012
(top left), 2013 (top right), 2014 (2nd row left) and 2015 (2nd row right). Energy
Spectra for cascades with 0.6  cos ✓rec for the years 2012 (3rd row left), 2013 (3rd row
right), 2014 (bottom left) and 2015 (bottom right)212



Appendix A. Additional Analysis Topics

�scat(HI) �2 log⇤sat (gof) p-value

50 cm 140.50 9.1 · 10�11

30 cm 68.87 0.032

Table A.2: Goodness of Fit comparison for two holeice models: hole ice scattering
50 cm and 30 cm. The fit uses 2 zenith bins, separated at cos ✓ = 0 (horizon).

�scat(HI) �2 log⇤sat (gof) p-value

50 cm 104.81 2.8 · 10�3

30 cm 70.47 0.39

Table A.3: Goodness of Fit comparison for two holeice models: hole ice scattering
50 cm and 30 cm. The fit uses the standard binning (3 bins with boundaries cos ✓ 2
{�1.0, 0.2, 0.6, 1.0}).

zenith angle is particularly e↵ected, see Sec. 4. Our fit result, c.f. Tab. 6.1 shows
a strong preference for enhanced scattering of photons near the IceCube DOMs, i.e. a
smaller scattering length of 30 cm in IceCube’s drill holes. We have found in Sec. 4 that
this, compared to the nominal simulation expectation based on 50, cm scattering length,
enhances the expected number of events in the southern hemisphere, while it lowers the
expected number of events in the northern hemisphere. The e↵ect is predicted to be most
noticeable near the horizon (c.f. Fig. 4.3, bottom) because the of the strong suppression
of the expected number of events for increasingly steep trajectories (from horizontal to
vertical directions). Because of this strong decrease, a small bias of a few degrees in the
reconstructed zenith angle towards steeper trajectories is su�cient to e↵ectively increase
the expected number of events from the southern hemisphere. This is particularly no-
ticeable if only 2 analysis bins, separated at cos ✓ = 0.0, are considered. To show the
e↵ect related to hole-ice scattering in isolation, using these 2 bins, we repeated the entire
measurement of the astrophysical single powerlaw model parameters for the two cases:
� = 30 cm and � = 50 cm, while keeping all other detector and flux related systematics
parameters (dom e�ciency, properties of bulk ice, cosmic-ray spectral index) fixed at
their nominal values. Only flux related normalization parameters and the astrophysical
spectral index are allowed to change. The result is shown in Fig. A.8 for all events (top),
southern hemisphere (2nd row) and northern hemisphere (bottom). The left column as-
sumes � = 50 cm and the right column corresponds to � = 30 cm. While both scenarios
lead to a reasonable description of the energy spectrum for all events (top) and thus can
not easily be distinguished, significant di↵erences are observed when the two hemispheres
are considered separately. The observed number of data events exceeds the best-fit ex-
pectation in the southern hemisphere by ⇠ 20% at all energies below ⇠ 150 TeV if a
scattering length of � = 50 cm is assumed (2nd row, left). Most of the excess vanishes if
the value is reduced to � = 30 cm. When the northern hemisphere is considered, instead
of an excess, we observe a deficit in the number of data events compared to the expecta-
tion from the fit. The mismatch is worse for � = 50 cm (bottom left).
Tab. A.2 quantifies this observation by evaluating the goodness-of-fit for the two cases.
Simply changing the hole-ice scattering length from � = 50 cm to � = 30 cm improves
the corresponding p-value by ⇠ 8 orders of magnitude.

For completeness we repeated the same calculations for the three zenith bins that we used
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in the actual analysis (edges: cos ✓ 2 {�1.0, 0.2, 0.6, 1.0}). The result is given in Tab.
A.3. Finally, as discussed in more detail in Sec. 6, the inferred astrophysical spectral
index is not e↵ected by any of these di↵erences (see Figs. 6.6 (top left) and 6.9 (bottom
left)), while the astrophysical normalization is reduced by only 10% when scattering is
increased to 30 cm,.
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Figure A.8: Comparison of fitted spectra using di↵erent hole-ice models. Left: hole
ice scattering 50 cm. Right: hole ice scattering 30 cm. Top: cascade from entire sky.
Middle: cascades with cos ✓ > 0 (southern sky). Bottom: cascades with cos ✓  0
(northern sky).
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