ESE 305: Deterministic Signals and Systems Summer 2018

Catalog Description:

Introduction to signals and systems. Manipulation of simple analog and digital signals. Relationship between frequencies of analog signals and their sampled sequences. Sampling theorem. Concepts of linearity, time-invariance, causality in systems. Convolution integral and summation; FIR and IIR digital filters. Differential and difference equations. Laplace transform, Z-transform, Fourier series and Fourier transform. Stability, frequency response and filtering. Provides general background for subsequent courses in control, communication, electronics, and digital signal processing.

Course Designation:	Required Course
Text Books:	"Signals and Systems," Chi-Tsong Chen. Third Edition, 2004. Oxford University Press. ISBN: 978-0-19-515661-4
Prerequisites:	Pre- or Corequisite: ESE 271
Coordinator:	Sangjin Hong
Goals:	Introduce basic concepts in signals and systems and associated mathematical and computational tools

Course Learning Outcomes:

- ability to apply knowledge of mathematics, science and engineering
- an ability to identify, formulate, and solve engineering problems
- an ability to use techniques, skills, and modern engineering tools necessary for engineering practice

Topics Covered:

Week 1.	Overview; signals and properties; signal transformations; Periodic signals; Impulses; Systems; System properties
Week 2.	DT and CT LTI Systems and Convolution; Intro to Frequency Domain and Fourier Series
Week 3.	Fourier Series in CT and DT; Fourier Series properties; Frequency representation of systems

Week 4.	Filtering; Introduction to Fourier Transform; Fourier Transform and LTI Systems
Week 5.	Discrete-Time Fourier Transform; Sampling; Intro to communications systems
Week 6.	Laplace Transform; Laplace Transform; Final review

Class/laboratory Schedule: 6 lecture hours per week

Student Outcomes	% contribution*		
\Box (a) an ability to apply knowledge of mathematics, science and engineering \Box (b) an ability to design and each engineering	40		
\Box (b1) an ability to design and conduct experiments			
\Box (b2) an ability to analyze and interpret data \Box (a) an ability to desire a system component, or proceeds to most desired needs			
\Box (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical,			
health and safety, manufacturability, and sustainability			
\Box (d) an ability to function on multi-disciplinary teams			
\Box (e) an ability to identify, formulate, and solve engineering problems	30		
\Box (f) an understanding of professional and ethical responsibility	50		
\Box (g) an ability to communicate effectively			
\Box (b) the broad education necessary to understand the impact of engineering			
solutions in a global, economic, environmental, and societal context			
\Box (i) a recognition of the need for, and an ability to engage in life-long learning			
\Box (j) a knowledge of contemporary issues			
\Box (k) an ability to use the techniques, skills, and modern engineering tools necessary	30		
for engineering practice	50		
Any other outcomes and assessments?			
Assume that the total contribution of any course will be 100%. Use the right hand column to			
rissume that the total contribution of any course will be 10070. Ose the right hand contain to			

indicate the approximate percent that the left hand columns contribute to the overall course.

Document Prepared by: Sangjin Hong **Date: April** 4, 2018

*