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The Agrobacterium-Plant Cell Interaction. Taking Biology
Lessons from a Bug1,2
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Agrobacterium elicits neoplastic growths (called
crown gall tumors) that affect most dicotyledonous
plants. Moreover, although plants represent the nat-
ural hosts for Agrobacterium, this microorganism
can also genetically transform a wide range of other
eukaryotic species, from yeast (Bundock et al., 1995;
Piers et al., 1996; Sawasaki et al., 1998) to mushrooms
(de Groot et al., 1998; Chen et al., 2000) and filamen-
tous fungi (de Groot et al., 1998; Gouka et al., 1999) to
phytopathogenic fungi (Rho et al., 2001; Rolland et
al., 2003) to human cells (Kunik et al., 2001). Most
functions for Agrobacterium-host cell DNA transfer
are coded by a large (200-kb) tumor-inducing (Ti)
plasmid that resides in the bacterial cell and carries
two important genetic components: the vir (viru-
lence) region and the T-DNA delimited by two 25-bp
direct repeats at its ends, termed the T-DNA borders
(for review, see Citovsky et al., 1992a; Zupan et al.,
2000; Gelvin, 2003). The vir region comprises seven
major loci, virA, virB, virC, virD, virE, virG, and virH,
which encode most of the bacterial protein machin-
ery (Vir proteins) of the DNA transport. After induc-
tion of vir gene expression by small phenolic signal
molecules secreted from wounded susceptible plant
cells (Stachel et al., 1985), the T-DNA borders are
nicked by the bacterial VirD2 endonuclease (Wang et
al., 1987), generating a transferable single-stranded
(ss) copy of the bottom strand of the T-DNA region,
designated the T strand (Stachel et al., 1986).

Interestingly, the T strand does not travel alone but
is thought to directly associate with two Agrobacte-
rium proteins, VirD2 and VirE2, forming a transport
(T) complex (Zupan and Zambryski, 1997) in which
one molecule of VirD2 is covalently attached to the
5�-end of the T strand, whereas VirE2, an ssDNA-
binding protein, is presumed to cooperatively coat
the rest of the T strand molecule (for review, see
Zupan and Zambryski, 1997; Tzfira et al., 2000; Zu-

pan et al., 2000). Although only the wild-type T-DNA
carries Ti genes, any DNA placed between the
T-DNA borders will be transferred to the plant host
(for review, see Zambryski, 1992; Sheng and
Citovsky, 1996). This lack of sequence specificity im-
plies that a T-DNA molecule itself does not encode
protein machinery for its transport from the bacterial
cell into the host cell, import into the host cell nu-
cleus, and integration into the host cell genome. In-
stead, these functions are fulfilled by the bacterial Vir
proteins and their host cell partners (for review, see
Gelvin, 2000; Tzfira et al., 2000).

In the last quarter of a century, since the discovery
of the stable integration of the bacterial DNA in
crown gall tumors (Chilton et al., 1977), Agrobacte-
rium has served as a primary a tool for plant genetic
engineering. Furthermore, the Agrobacterium-host
cell interaction also represents a unique and power-
ful experimental system to study a wide spectrum of
basic biological processes such as cell-cell recognition
and cell-to-cell transport, nuclear import, assembly
and disassembly of protein-DNA complexes, DNA
recombination, and regulation of gene expression.
This special Focus Issue reviews the use of Agrobac-
terium as a gene vector for plants and reports new
insights into the processes of cell-cell recognition and
attachment, intercellular transport, DNA integration,
and transgene expression gained from the Agrobac-
terium research.

GENETIC ENGINEERING

Predating the science fiction visions of nanomach-
ines performing genetic engineering and other bio-
technological tasks (Modesitt Jr., 2000), Agrobacte-
rium is a present-day microscopic but extremely
complex machine routinely used to alter genotypes
of higher plants. This use of Agrobacterium is based
on its unique capacity for “trans-kingdom sex”
(Stachel and Zambryski, 1989), i.e. transfer of genetic
material between prokaryotic and eukaryotic cells.
Decades of research altered, augmented, and vastly
improved this natural capacity, resulting in inge-
niously modified Agrobacterium strains that can
transfer and stably integrate virtually any gene to a
variety of plant species, from research model plants
such as Arabidopsis (Clough and Bent, 1998) to ag-
riculturally important rice (Hiei et al., 1994) and corn
(Ishida et al., 1996). In this issue, Valentine (pp. 948–
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955) reviews the molecular mechanisms of T-DNA
transfer that underlie the use of Agrobacterium as
gene vector. Importantly, a special emphasis is
made on the ethical and political aspects of the
release of Agrobacterium-generated genetically
modified plants into the environment and on the
attitudes of different and often opposing geopoliti-
cal and economic forces to these matters (Valentine,
2003).

CELL-CELL RECOGNITION AND ATTACHMENT

Agrobacterium recognition of and attachment to
the host cells is an early and essential step of the
infection process. The bacterial proteins participating
in these events are encoded by several loci, e.g. chvA,
chvB, pscA, and att (Douglas et al., 1985; Matthysse,
1987; Thomashow et al., 1987). In particular, the att
genes (Matthysse, 1987; Matthysse et al., 2000), such
as attR and attD, are located on a cryptic plasmid
pAtC58 (Goodner et al., 2001). Although pAtC58 is
about twice as large as the Ti plasmid and, thus,
likely encodes numerous bacterial functions, it has
been considered dispensable for infection (Hooykaas
et al., 1977; Rosenberg and Huguet, 1984; Hynes et
al., 1985). In this issue, Nair et al. (pp. 989–999) revisit
this dogma and demonstrate that pAtC58 increases
Agrobacterium virulence. Surprisingly, however,
this increase was likely due to the enhancement of
the vir gene expression rather than to the presence of
the attR gene on the pATC58 plasmid (Nair et al.,
2003).

Although the bacterial genes participating in
Agrobacterium attachment to the host plants are rel-
atively well characterized (Douglas et al., 1985; Mat-
thysse, 1987; Thomashow et al., 1987; Matthysse et
al., 2000), the involvement of host factors remains
largely obscure. Recent progress in this direction
stemmed from identification of T-DNA-tagged Ara-
bidopsis mutants defective in their ability to bind
Agrobacterium (Nam et al., 1999; Zhu et al., 2003b).
In this issue, Zhu et al. (2003) report characterization
of one such mutant, rat4, which contains a T-DNA
insertion in the 3�-untranslated region of cellulose
synthase-like gene CSLA9. Their data indicate that
CSLA9 is involved in development and growth of
lateral roots, determination of sugar composition of
plant cell walls, and the ability of the roots to bind
Agrobacterium (Zhu et al., 2003a). Furthermore, the
CSLA9 promoter exhibited enhanced expression in the
root elongation zone (Zhu et al., 2003a), previously
shown to be most susceptible to Agrobacterium-
mediated transformation (Yi et al., 2002). Similarly,
preferential expression in the elongation zones of Ara-
bidopsis roots has been reported for a plant histone
gene, H2A-1, which is required for T-DNA integration
(Yi et al., 2002).

CELL-TO-CELL TRANSPORT

T strands with their cognate VirD2 are exported
into the host cell by a type IV secretion system, which
in Agrobacterium is assembled from proteins en-
coded by the virD4 gene and virB operon, with 11
open reading frames (for review, see Christie, 1997;
Zupan et al., 1998). Interestingly, this system also
exports other Agrobacterium proteins, such as VirE3
(Schrammeijer et al., 2003), VirF, and VirE2 (Vergunst
et al., 2000). Although VirE2 most likely packages the
T strand into the T complex (for review, see Zupan
and Zambryski, 1997; Tzfira et al., 2000; Zupan et al.,
2000), this binding is thought to occur within the
cytoplasm of the host cell (Citovsky et al., 1992b;
Gelvin, 1998) after independent export of the T
strands and VirE2 (Binns et al., 1995; Lee et al., 1999).
But what prevents VirE2 from binding to the T
strands already within Agrobacterium? This role has
been assigned to the VirE1 chaperone protein that
associates with VirE2 and blocks its binding to
ssDNA (Sundberg et al., 1996; Deng et al., 1999;
Sundberg and Ream, 1999; Zhou and Christie, 1999).
Furthermore, VirE1 has been suggested also to par-
ticipate in the VirE2 export (Sundberg et al., 1996;
Sundberg and Ream, 1999). However, convincing ev-
idence to the contrary is presented by Vergunst et al.
(2003). Using the Cre Recombinase Reporter Assay
for Translocation to study protein export from
Agrobacterium into plant and yeast cells, they dem-
onstrate that recognition of VirE2 by the bacterial
export machinery and its subsequent translocation
into host cells does not depend on the presence of
VirE1 (Vergunst et al., 2003). Cre Recombinase Re-
porter Assay for Translocation was then utilized to
show that VirE3, another product of the virE locus
earlier reported to be exported into the yeast cells
(Schrammeijer et al., 2003), is transferred from
Agrobacterium to plants (Vergunst et al., 2003). The
function of VirE3 in the plant cell, however, remains
completely unknown. Vergunst et al. (2003) also lo-
calized the Agrobacterium-to-plant export signal to
the C-terminal 50 amino acids of VirE2 and VirE3.
These and previous studies (Vergunst et al., 2000,
2003; Schrammeijer et al., 2003) clearly demonstrate
that in addition to DNA, Agrobacterium transfers a
variety of its own proteins to the host cell; the chal-
lenge to researchers now is to understand how these
bacterial proteins participate in the genetic transfor-
mation process from within the host cell.

DNA INTEGRATION AND EXPRESSION

T-DNA integration is the culmination point of the
entire process of the Agrobacterium-plant cell DNA
transfer. But how does a T-DNA molecule insinuate
itself into the molecule of the plant genomic DNA?
Because the T-DNA does not encode enzymatic ac-
tivities required for integration, the protein compo-
nents of the T-complex, i.e. VirD2 (Tinland et al.,
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1995; Mysore et al., 1998) and VirE2 (Rossi et al.,
1996) and/or host nuclear factors, such as AtKu80
(Friesner and Britt, 2003) and plant DNA ligases (Zi-
emienowicz et al., 2000; Friesner and Britt, 2003),
must provide these functions. T-DNA integration
was proposed to initiate with ligation of the 5� end of
the T strand to the genomic DNA followed by second
strand synthesis by the plant DNA repair machinery
(Tinland et al., 1995). However, another study sug-
gested that the T strand is converted into a double-
stranded form before integration (De Neve et al.,
1997).

Two papers published in this issue (Chilton and
Que, pp. 956–965; Tzfira et al., pp. 1011–1023) shed
new and exciting light on the integration mechanism.
Chilton and Que (2003) provide strong evidence for
T-DNA integration into double-stranded breaks cre-
ated in the plant genome by a transiently expressed
rare cutting endonuclease I-CeuI. Nucleotide se-
quence analysis of the plant DNA/T-DNA junctions
indicated that T-DNA integration occurred by a non-
homologous end-joining mechanism (Chilton and
Que, 2003). These findings are consistent with the
recently reported involvement of Arabidopsis
AtKu80—known to be required for the initiation of
non-homologous end-joining—in the T-DNA inte-
gration process (Friesner and Britt, 2003). Tzfira et al.
(2003) utilized the double-stranded DNA breaks cre-
ated by transient expression of another endonucle-
ase, I-SceI, to demonstrate preferential T-DNA inte-
gration into these 18-bp-long I-SceI recognition sites
as determined by sequencing analyses of integration
junctions from 620 independent transgenic lines
(Tzfira et al., 2003). The efficiency of targeted inte-
gration in these experiments was 2.58%, significantly
higher than 4 � 10�7% predicted for the probability
of random integration into a 18-bp region of the
approximately 4.5-gigabase tobacco (Nicotiana taba-
cum) genome (Tzfira et al., 2003). Both studies sug-
gested that T strands are first converted to double-
stranded intermediates and only then are integrated
into the plant DNA (Chilton and Que, 2003; Tzfira et
al., 2003).

Obviously, it is the expression of the integrated
transgenes that produces tumors in the wild-type
infection or desired transgenic phenotypes in genetic
engineering experiments. However, some trans-
genes, although stably integrated in the plant ge-
nome, often are not expressed due to their posttran-
scriptional gene silencing (PTGS), which is
characterized by a reduction in transcript levels with-
out affecting the rate of transcription (for review, see
Fagard and Vaucheret, 2000; Vaucheret et al., 2001).
Furthermore, PTGS of a transgene can also silence
its endogenous cellular homologs, resulting in co-
suppression (van der Boogaart et al., 1998).
Agrobacterium-mediated gene delivery has served as
a valuable experimental tool to study the mecha-
nisms of induction and cell-to-cell spread of PTGS

(Voinnet et al., 1998; Johansen and Carrington, 2001;
Ueki and Citovsky, 2001). Continuing this trend, Lee
et al. (2003) utilized silencing of Agrobacterium on-
cogenes contained within the T-DNA to demonstrate
that transgene sequences influence the effectiveness
of PTGS and that sequences required for oncogene
silencing must include a translation start site (Lee et
al., 2003). Unexpectedly, unlike several other cases of
PTGS (Palauqui et al., 1997), oncogene silencing was
not graft transmissible (Escobar et al., 2003; Lee et al.,
2003). In addition to helping us better understand the
mechanisms of PTGS, silencing of Agrobacterium
oncogenes (Escobar et al., 2001, 2003; Lee et al., 2003)
represents a novel approach to control the crown gall
disease, which affects such agronomically important
plants as grape, rose, apple, cherry, and others.

Finally, Agrobacterium infection was also used as a
model system to study cellular processes required for
establishment of plant tumors. Wächter et al. (2003)
showed that vascular differentiation and disruption
of epidermal cell layers play key roles in tumor for-
mation, allowing delivery of water and Suc to the
proliferating tumor cells. This work suggested that
Agrobacterium-induced tumors represent nutritional
sinks to which a high-volume flow of solutes with
essential inorganic nutrients is directed in an
ethylene-dependent fashion, followed by a Suc-to-
hexose shift in sugar balance caused by vacuolar
invertases within the growing tumors (Wächter et al.,
2003).
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