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In part B, solve 4 out of 5 problems for full credit.

Indicate below which problems you have attempted by circling the appropriate numbers:

Part A: 1 2 3 4 5
Part B: 6 7 8 9 10
NAME:
STUDENT ID:
SIGNATURE:

This is a closed-book exam. No calculator is allowed. Start your answer on its corresponding
question page. If you use extra pages, print your name and the question number clearly at the top
of each extra page. Hand in all answer pages.

Date of Exam: May 28th, 2025
Time: 9:00 AM - 1:00 PM



A1l. Consider a differential operator L. The adjoint operator is defined as the operator L’ such that

/Q o(z) Lu(z)] dO = / Lo(2)] u(z) d2

Q

for all v € C§*(2), the set of m-times continuously differentiable functions with compact support in €.

(a) Find the adjoint operator for the following:

1) %—i—a(x)a%

p) Rl
N+ &
Ho - vl
(b) The weak (or distributional) derivative of a function f is a distribution f’ defined by the equation
(f',v) = —(v', f). Find the weak derivative of

0 ifz <0,

rz if0<x<,
f(z) = .

1 ifl1<z<?2,

2 ifx > 2.



Continue solution:



A2. For the conservation law u; + f(u), = 0, given the initial condition as

Uy r<—1
u(z,0) =< u, —-l<z<l
Uy z>1

where f(u) = u(10 — u) and u > 0:
(a) Draw the characteristics and find solution u(z, t) if u; = u,,, = 2 and u, = 8.
(b) Draw the characteristics and find solution u(z, t) if u; = 8 and u,,, = u, = 2.

(c) Draw the characteristics and find solution u(z, t) if u; = 2 and u,,, = 5 and u, = 8.



Continue solution:



A3. Solve Laplace equation with the given boundary conditions. Find the maximum and minimum of the
solution.

Upe T Uyy =0, (z,y) €Q:2e(0,1),y €(0,1).

u(z,0) =0,

u(x,1) =4z(1 — x),
u(0,y) = sin 27y,
u(l,y) = sinmy



Continue solution:



Ad. Let f be analytic on a region A except for poles at by, . . ., by,, counted with their multiplicities, and let
ai,-..,ay, be zeroes of f counted with their multiplicities (that is, if b; is a pole of order k, then &; is to be
repeated k times in the list, and similarly for the zeros a; ). Let -y be a closed curve homotopic to a point in
A and passing through none of the points a; or b;. Prove that

/ J;c/((j))dz =2mi | Y I(va5) =Y I(v:by)
v Jj=1 =1



Continue solution:



AS. Find an explicit conformal map from region A; to region Ao, where
A1 ={z€C, Re(z) >0, Im(z) >0, |z| > 1},

Ay ={z € C, Im(z) > 0}.



Continue solution:
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B6. Newton’s method for solving nonlinear equations (10 points)

(a) (3 points) Derive Newton’s iteration formula z1 = xp — f(x)/f'(zx) using a first-order Taylor
expansion of f(x) around x. Give a geometric interpretation and state the generalization for systems
f(x) = 0, specifying the linear system solved at each iteration.

(b) (4 points) For a simple root z, of f(xz) = 0 (f(z«) = 0, f'(x«) # 0), prove that Newton’s method
exhibits Q-quadratic convergence near x,. You may use the Taylor expansion f(x.) = f(x) +
f(@r)(zs — z1) + 3 " (&) (2 — 1) How does convergence change for multiple roots? State the
Q-order of convergence and briefly justify your answer.

(c) (3 points) Provide an example where Newton’s method fails to converge. Explain how a line search
strategy with a merit function (e.g., ¢(z) = % f()?) enhances robustness and global convergence.
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Continue solution:
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B7. Numerical solutions of initial value problems (10 points)

(a) (3 points) For the IVP 4/(t) = f(t,y(t)), y(to) = yo: Derive the trapezoidal rule by approximating
Y(tnt1) — y(tn) = ft:”l f(t,y(t))dt with trapezoidal quadrature. State the order of accuracy (in
terms of the global order) for both the trapezoidal rule and forward Euler method.

(b) (4 points) For the test equation 3/ (t) = Ay(¢) (A € C) with z = h, find the stability function R(z) for
forward Euler and trapezoidal methods. Define A-stability and determine which of these two methods
is A-stable.

(c) (3 points) Characterize stiff ODE systems. Between the two methods, which one is more suitable for
stiff problems? Explain why. Discuss the implications of stiffness on the choice of time step size and
the potential for numerical instability in explicit methods.
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Continue solution:
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B8. Consider a one-dimensional diffusion equation vy = Vv, ¥ > 0, on infinite interval and derive the
leapfrog scheme. It is known that the leapfrog scheme is unconditionally unstable for this PDE.

(a) Replace uj in the leapfrog scheme with the time average (urk,”rl + uzfl)/ 2 to derive the so-called
Dufort-Frankel scheme. Here v} is a numerical approximation to the analytic solution v(z, t) at point
(kAz,nAt).

(b) Investigate stability of the Dufort-Frankel scheme by using the discrete Fourier transform.
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Continue solution:
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B9. Consider a nonlinear scalar hyperbolic PDE in the conservation law form

vr + [f(v)], =0,

and write down the general expression for its conservative numerical scheme (you may assume that a 3-point
stencil is used).

(a) Assuming that the numerical flux F(.,.) is differentiable with respect to each argument, show that
consistency requires the numerical flux F' to be identical to the analytical flux function f for constant
flows: if v(x,t) = v, then F(v,0) = f(v).

(b) Derive the Lax-Wendroff scheme for v; 4 [f(v)], = 0 and find the numerical flux. Does it satisfy the
consistency condition of (a)?
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Continue solution:
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B10. Using the method of modified PDE’s investigate numerical dissipation and dispersion properties of
the leapfrog scheme for the linear advection equation v; + av, = 0.
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Continue solution:
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